Two fundamental Archimedes' principle problems involve finding the buoyant force on an object, either floating or completely submersed in an incompressible fluid, and deciding if an object floats or sinks. These and many other Archimedes' law problems start with the equations $F_{g}=m g=(\rho g) V$ for the force of gravity and $F_{b}=\rho_{f} g V_{f}$ for the buoyancy, where ρ is the density of the object, ρ_{f} is the density of the fluid in which it is wholly or partially immersed, V is the volume of the object, and V_{f} is the volume of fluid displaced. If the object is floating with no other forces acting, then $\rho V=\rho_{f} V_{f}$.

For a fluid in motion, the volume flow rate gives the volume of fluid that passes a cross section per unit time and is given by $A v$, where A is the cross-sectional area of the tube and v is the fluid speed.

Bernoulli's equation is used to solve some problems. It relates conditions (density, fluid speed, pressure, and height above Earth) at one point in the steady flow of a nonviscous, incompressible fluid to conditions at another point. If you are given all but one of these quantities you can use Bernoulli's equation to solve for the unknown quantity.

Questions and Example Problems from Chapter 13
Question 1
A closed tank is completely filled with water. A valve is then opened at the bottom of the tank and water begins to flow out. When the water stops flowing, will the tank be completely empty, or will there still be a noticeable amount of water in it? Explain your answer.

Trace wive stree le wats in to tome.
The water will stop flawing out when to pressure P is equal to P atm.

Question 2
A steel beam is suspended completely under water by a cable that is attached to one end of the beam, so it hangs vertically. Another identical beam is also suspended completely under water, but by a cable that is attached to the beam so it hangs horizontally. Which beam, if either, experiences the greater buoyant force? Provide a reason for your answer. Neglect any change in water density with depth.

$$
\begin{aligned}
& \text { Baugant force is the same for ear. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { tres same for each case (} \left.V_{\text {sub }}=V_{\text {erevan }}\right) \text {. }
\end{aligned}
$$

Problem 1
A pirate in a movie is carrying a chest $(0.30 \mathrm{~m} \times 0.30 \mathrm{~m} \times 0.20 \mathrm{~m})$ that is supposed to be filled with gold. To see how ridiculous this is, determine the weight (in newtons) of the gold. To judge how large this weight is, remember that $1 \mathrm{~N}=0.225 \mathrm{lb}$.

$$
\begin{aligned}
& \rho_{\text {gold }}=1.93 \times 10^{4} \mathrm{~kg} / \mathrm{m}^{3} \\
& V=0.30 \mathrm{~m} \times 0.30 \mathrm{~m} \times 0.20 \mathrm{~m} \\
& \\
& =0.018 \mathrm{~m}^{3}
\end{aligned}
$$

$$
e=m / v \rightarrow m=e v
$$

$$
m=\left(1.93 \times 10^{4} \mathrm{~kg} / \mathrm{m}^{3}\right)\left(0.018 \mathrm{~m}^{3}\right)
$$

$$
m=347 \mathrm{~kg}
$$

$$
w=m g=(347 \mathrm{~kg})\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right) \rightarrow \begin{aligned}
& w=3.40 \times 10^{3} \mathrm{~N} \\
& (\approx 7661 \mathrm{bs})
\end{aligned}
$$

Problem 2
An airtight box has a removable lid of area $1.3 \times 10^{-2} \mathrm{~m}^{2}$ and negligible weight. The box is taken up a mountain where the air pressure outside the box is $0.85 \times 10^{5} \mathrm{~Pa}$. The inside of the box is completely evacuated. What is the magnitude of the force required to pull the lid off the box?

$$
P=F / A \rightarrow F=P A
$$

\Rightarrow tho not force pushing down on the lid is

$$
F_{\text {artasto }}-F_{\text {inindo }}=P_{\text {putadio }} A-P_{\text {mined }} A \text {, }
$$

but $P_{\text {manse }}=0$ since inside of box is completely evacuated

$$
F_{\text {outside }}=P_{\text {outside }} A=\left(0.85 \times 10^{5} \mathrm{~Pa}\right)\left(1.3 \times 10^{-2} \mathrm{~m}^{2}\right)=1105 \mathrm{~N}
$$

\Rightarrow to pull the lid of, we mess exert a force of at least 1105 N
Problem 3
High-heeled shoes can cause tremendous pressure to be applied to a floor. Suppose that the radius of a heel is $6.00 \times 10^{-3} \mathrm{~m}$. At times during a normal walking motion, nearly the entire body weight acts perpendicular to the surface of the heel. Find the pressure that is applied to the floor under the heel because of the weight of a 50.0 kg woman.

$$
\begin{aligned}
& m=50.0 \mathrm{~kg} \\
& w=m g=(50.0 \mathrm{~kg})\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)=490 \mathrm{~N} \rightarrow \rightarrow \begin{array}{l}
\text { this is the force exerted } \\
\text { on an area equal to } \\
\\
\text { the area of the heel }
\end{array} \\
& r=6.00 \times 10^{-3} \mathrm{~m} \\
& p=F / A=\frac{F}{\pi r^{2}} \rightarrow P=\frac{(490 \mathrm{~N})}{\pi\left(6.00 \times 10^{-3} \mathrm{~m}\right)^{2}}=4.33 \times 10^{6} \mathrm{~Pa}
\end{aligned}
$$

Problem 4
At a depth of 10.9 km , the Challenger Deep in the Marianas Trench of the Pacific Ocean is the deepest site in any ocean. Yet, in 1960, Donald Walsh and Jacques Piccard reached the Challenger Deep in the bathyscaphe Triete. Assuming that seawater has a uniform density of $1024 \mathrm{~kg} / \mathrm{m}^{3}$, calculate the force the water would exert at a depth of 10.9 km on a round observation window of diameter 25 cm .

$$
\begin{array}{ll}
P_{0}=p_{\text {atm }}=1.013 \times 10^{5} \mathrm{~Pa} & P=p_{0}+p g d \\
p=? & P=\left(1.013 \times 10^{5} \mathrm{~Pa}\right)+\left(1024 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}\right)\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)\left(10.9 \times 10^{3} \mathrm{~m}\right) \\
d=10.9 \mathrm{~km}=10.9 \times 10^{3} \mathrm{~m} & P=\frac{1.095 \times 10^{8} \mathrm{~Pa}}{\int} \\
e=1024 \mathrm{~kg} / \mathrm{m}^{3} &
\end{array}
$$

this is pressureata depth of 10.9 km

$$
P=F / A \rightarrow F=P A
$$

\Rightarrow tho force the water exerts on the undies is equal to

$$
\begin{aligned}
F & =P A=P\left(\pi r^{2}\right) \\
& =\left(1.095 \times 10^{8} \mathrm{~Pa}\right) \pi\left(12.5 \times 10^{-2} \mathrm{~m}\right)^{2}=5.4 \times 10^{6} \mathrm{~N}
\end{aligned}
$$

Problem 5
At a given instant, the blood pressure in the heart is $1.6 \times 10^{4} \mathrm{~Pa}$. If an artery in the brain is 0.45 m above the heart, what is the pressure in the artery? Ignore any pressure changes due to blood flow.

$$
\begin{aligned}
& P_{\text {blood }}=1060 \mathrm{Kg} / \mathrm{m}^{3} \\
& d=0.45 \mathrm{~m} \\
& P=1.6 \times 10^{4} \mathrm{~Pa} \\
& P_{0}=?
\end{aligned}
$$

$$
P=P_{0}+\operatorname{pg} d
$$

$$
P_{0}=p-\dot{e g} d
$$

$$
P_{0}=1.1 \times 10^{4} \mathrm{~Pa}
$$

Problem 6
A solid block is attached to a spring scale. When the block is suspended in air the scale reads 20.0 N ; when it is completely immersed in water the scale reads 17.7 N . What is the (a) volume and (b) density of the block?

$$
\left.\begin{array}{l}
W_{\text {an }}=20.0 . \mathrm{N} \\
w_{\text {water }}=17.7 \mathrm{~N}
\end{array}\right\} \text { baugant force } F_{B}=w_{\text {an }}-w_{\text {water }}=2.30 \mathrm{~N}
$$

(a) $F_{B}=P_{\text {feud }} V_{\text {sub }} \rightarrow$ if blocen is completely submerged then

$$
\begin{aligned}
& F_{B}=P_{\text {felid a }} V_{\text {beach }} g \rightarrow V_{\text {sub }}=V_{\text {bloch }} \\
& \left.V_{\text {beach }}=2.35 \times 10^{-4} \mathrm{~m}^{3}\right)
\end{aligned}
$$

(b)

$$
\begin{aligned}
w_{\text {an }} & =m g \rightarrow m=\omega_{\text {an }} / g=\frac{20.0 \mathrm{~N}}{9.80 \mathrm{~m} / \mathrm{s}^{2}}=2.04 \mathrm{~kg} \\
P= & m=\frac{2.04 \mathrm{Kg}}{2.35 \times 10^{-4} \mathrm{~m}^{3}} \rightarrow 0=8.68 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}
\end{aligned}
$$

Problem 7
Only a small part of an iceberg protrudes above the water, while the bulk lies below the surface. The density of ice is $917 \mathrm{~kg} / \mathrm{m}^{3}$ and that of seawater is $1025 \mathrm{~kg} / \mathrm{m}^{3}$. Find the percentage of the iceberg's volume that lies below the surface.
\Rightarrow since the icelung is floating, the bauyant force must equal the weight

$$
\begin{aligned}
F_{B}=w \longrightarrow & e_{\text {fluid }} V_{\text {sub }} g=m g \quad m=p V \\
& \left(\text { Pperid }^{\text {fou b }} V_{\text {sub }}=\left(e_{\text {vie }} V_{\text {rue }}\right) g\right.
\end{aligned}
$$

$$
\begin{aligned}
& P_{\text {period }} V_{\text {sue }}=e_{\text {ice }} V_{\text {ice }} \\
& V_{\text {sub }}=\left(\frac{P_{\text {ice }}}{P_{\text {enid }}}\right) V_{\text {ice }} \rightarrow V_{\text {sub }}=\left(\frac{917 \mathrm{~kg} / \mathrm{m}^{3}}{1025 \mathrm{~kg} / \mathrm{m}^{3}}\right) V_{\text {ire }} \\
& V_{\text {sub }}=0.895 V_{\text {ice }} \rightarrow 89.5 \% \text { submerged }
\end{aligned}
$$

Problem 8
A water line with an internal radius of $6.5 \times 10^{-3} \mathrm{~m}$ is connected to a shower head that has 12 holes. The speed of the water in the line is $1.2 \mathrm{~m} / \mathrm{s}$. (a) What is the volume flow rate in the line?
(b) At what speed does the water leave one of the holes (effective hole radius $=4.6 \times 10^{-4} \mathrm{~m}$) in the head?

$$
\left.\begin{array}{rl}
r_{1}=6.5 \times 10^{-3} \mathrm{~m} & (a) \text { volume flow rate }\left(\mathrm{m}^{3} / \mathrm{s}\right) \\
V_{1}=1.2 \mathrm{~m} / \mathrm{s} & Q
\end{array}\right)=A v=\left(\pi r^{2}\right) \mathrm{v}, ~\left(6.5 \times 10^{-3} \mathrm{~m}\right)^{2}(1.2 \mathrm{~m} / \mathrm{s})
$$

(b)

$$
\begin{aligned}
& r_{2}=4.6 \times 10^{-4} \mathrm{~m} \\
& V_{2}=?
\end{aligned}
$$

$A_{2} V_{2}=A_{1} V_{1}$ mote: $A_{2}=12 \pi r_{2}^{2}$ sine shower head has 12 a roes

Problem 9

$$
V_{2}=\frac{\pi\left(6.5 \times 10^{-3} \mathrm{~m}\right)^{2}(1.2 \mathrm{~m} / \mathrm{s})}{12 \pi\left(4.6 \times 10^{-4 \mathrm{~m})^{2}}\right.} \rightarrow V_{2}=2.0 \times 10^{1} \mathrm{~m} / \mathrm{s}
$$

Water flows through a pipe of radius 8.0 cm with a speed of $10.0 \mathrm{~m} / \mathrm{s}$. It then enters a smaller pipe of radius 3.0 cm . What is the speed of the water as it flows through the smaller pipe? Assume that the water is incompressible.

$$
\begin{aligned}
& r_{1}=8.0 \mathrm{~cm} \\
& V_{1}=10.0 \mathrm{~m} / \mathrm{s} \\
& r_{2}=3.0 \mathrm{~cm} \\
& V_{2}=?
\end{aligned}
$$

$$
A_{1} v_{1}=A_{2} v_{2}
$$

$$
\left(\pi r_{1}^{2}\right) v_{1}=\left(\pi r_{2}^{2}\right) v_{2}
$$

$$
V_{2}=\frac{r_{1}^{2}}{r_{2}^{2}} V_{1}=\left(\frac{r_{1}}{r_{2}}\right)^{2} V_{1}
$$

$$
\begin{aligned}
V_{2} & =\left(\frac{r_{1}}{r_{2}}\right)^{2} V_{1} \\
& =\left(\frac{8.0 \mathrm{~cm}}{3.0 \mathrm{~cm}}\right)^{2}(10.0 \mathrm{~m} / \mathrm{s}) \rightarrow V_{2}=71 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Problem 10
An airplane has an effective wing surface area of $16 \mathrm{~m}^{2}$ that is generating the lift force. In level flight the air speed over the top of the wings is $62.0 \mathrm{~m} / \mathrm{s}$, while the air speed beneath the wings is $54.0 \mathrm{~m} / \mathrm{s}$. What is the weight of the plane?

$$
\begin{aligned}
& \text { level flight } \longrightarrow a_{y}=0 \\
& \sum F_{y}=m a_{y}=0 \longrightarrow F_{\text {eft }}=w
\end{aligned}
$$

$F_{\text {list }}=\left(p_{2}-p_{1}\right) A$ where $p_{2}-p_{1}$ is the pressure difference

$$
\begin{aligned}
& p_{1}+1 / 2 \rho v_{1}^{2}+\rho g y_{1}=p_{2}+1 / \rho v_{2}^{2}+p g y_{2} \text { assume } y_{1}=y_{2} \\
& p_{1}+1 / 2 \rho v_{1}^{2}=p_{2}+1 / 2 \rho v_{2}^{2} \longrightarrow p_{2}-p_{1}=1 / 2 \rho\left(v_{1}^{2}-v_{2}^{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& P_{1}+1 / 2 P v_{1}^{2}=p_{2}+1 / 2 P v_{2}^{2} \longrightarrow p_{2}-p_{1}=1 / 2 \rho\left(v_{1}^{2}-v_{2}^{2}\right) \\
& F_{\text {left }}=1 / 2 p\left(v_{1}^{2}-v_{2}^{2}\right) A=1 / 2\left(1.29 \mathrm{~kg} / \mathrm{m}^{3}\right)\left[(62.0 \mathrm{~m} / \mathrm{s})^{2}-(54.0 \mathrm{~m} / \mathrm{s})^{2}\right]\left(16 \mathrm{~m}^{2}\right) \\
& \text { Problem } 11=9.58 \times 10^{3} \mathrm{~N} \longrightarrow \omega=9.58 \times 10^{3} \mathrm{~N}
\end{aligned}
$$

Suppose that a $15 \mathrm{~m} / \mathrm{s}$ wind is blowing across the roof of your house. The density of air is $1.29 \mathrm{~kg} / \mathrm{m}^{3}$. (a) Determine the reduction in pressure (below atmospheric pressure of stationary air) that accompanies this wind. (b) Explain why some roofs are "blown outward" during high winds.
from Bernoulli equation: $p_{1}+1 / 2 p v_{1}^{2}+p g y_{1}=p_{2}+1 / 2 \rho v_{2}^{2}+\rho g y_{2}$ assume $y_{1}=y_{2} \rightarrow P_{1}+1 / 2 \rho v_{1}^{2}=P_{2}+1 / 2 \rho v_{2}^{2}$

$$
\begin{aligned}
P_{1}-P_{2} & =1 / 2 P\left(v_{1}^{2}-v_{2}^{2}\right) \\
& =1 / 2\left(1.29 \mathrm{Kg} / \mathrm{m}^{3}\right)\left[(15 \mathrm{~m} / \mathrm{s})^{2}-(0 \mathrm{~m} / \mathrm{s})^{2}\right]=145 \mathrm{~Pa}_{a} \\
P_{1}-P_{2} & =1.5 \times 10^{2} P_{a}
\end{aligned}
$$

(b) Since $P=F / A \rightarrow F=P A$. The pressure inside the house is greater than the pressure outside tho house. This courses a net outward force on the roof. If the net force is large enough, the sob can actually be pushed off.

