Uniform Circular Motion

 \Rightarrow An object in uniform circular motion is accelerating because its direction is constantly changing.

Period (T): time for one complete revolution

Speed:
$$v = \frac{2\pi r}{T}$$

Centripetal Acceleration:

 \Rightarrow magnitude is given by $a_c = \frac{v^2}{r}$

 \Rightarrow direction is towards the center of the circular path.

Centripetal Force:

The net force required to keep an object moving in uniform circular motion.

Newton's 2nd law for circular motion:

$$F_c = ma_c = \frac{mv^2}{r} \rightarrow \sum F = \frac{mv^2}{r}$$

Note: centripetal force is not a new kind of force. It is usually a force or combination of forces such as tension, weight, normal force, friction, ...

Note: when doing uniform circular motion problems, it is customary to define positive in the direction of acceleration (towards the center of the circle)

Banked and Unbanked Curves:

 \Rightarrow In an unbanked curve, static friction supplies the centripetal force.

max speed:
$$v = \sqrt{\mu_s gr}$$

 \Rightarrow In a banked (frictionless) curve, a component of the normal force supplies the centripetal force.

angle of banked curve:
$$\tan \theta = \frac{v^2}{rg}$$