Simple Harmonic Motion

Hooke's law: F = -kx ([k] = N/m)

⇒ the – sign indicates that the direction of the force is opposite the displacement

Frequency: $f = \frac{1}{T}$ ([f] = Hz)

Period: $T = \frac{1}{f}$ ([T] = s)

Simple Harmonic Motion:

⇒ for an object oscillating in simple harmonic motion:

$$x = A\cos\omega t$$
 $x_{\text{max}} = A$
 $v = -A\omega\sin\omega t$ $v_{\text{max}} = A\omega$

$$a = -A\omega^2 \cos \omega t \qquad a_{\text{max}} = A\omega^2$$

$$\omega = 2\pi f = \frac{2\pi}{T}$$

Note:
$$v = 0$$
 at $x = \underline{+}A$; $v = v_{max}$ at $x = 0$ $a = 0$ when $x = 0$; $a = a_{max}$ at $x = \underline{+}A$

⇒ for a mass m oscillating on a spring with spring constant k:

$$\omega = \sqrt{\frac{k}{m}}$$
 $f = \frac{1}{2\pi} \sqrt{\frac{k}{m}}$ $T = 2\pi \sqrt{\frac{m}{k}}$

Elastic Potential Energy: $PE = \frac{1}{2}kx^2$

Conservation of Energy: $\frac{1}{2}mv_0^2 + mgh_0 + \frac{1}{2}kx_0^2 = \frac{1}{2}mv_f^2 + mgh_f + \frac{1}{2}kx_f^2$

Simple Pendulum:

⇒ for a simple pendulum (for small angles):

$$\omega = \sqrt{\frac{g}{L}}$$
 $f = \frac{1}{2\pi} \sqrt{\frac{g}{L}}$ $T = 2\pi \sqrt{\frac{L}{g}}$