Homework for Chapter 27

(Due 10/27/22)

Questions: 2, 8, 10
Exercises \& Problems: 1, 23, 33, 45, 48, 61, 63, 72, 92

Question 2

(a) In Fig. 27-18a, are resistors R_{1} and R_{3} in series? (b) Are resistors R_{1} and R_{2} in parallel? (c) Rank the equivalent resistances of the four circuits shown in Fig.
 27-18, greatest first.

Question 8

Cap-monster maze. In Fig. 27-22, all the capacitors have a capacitance of $6.0 \mu \mathrm{~F}$, and all the batteries have an emf of 10 V . What is the charge on capacitor C ? (If you can find the proper loop through this maze, you can answer the question with a few seconds of mental calculation.)

Question 10

After the switch in Fig. 27-15 is closed on point a, there is current i through resistance R. Figure 27-23 gives that current for four sets of values of R and capacitance C : (1) R_{0} and C_{0}, (2) $2 R_{0}$ and C_{0}, (3) R_{0} and $2 C_{0}$, (4) $2 R_{0}$ and $2 C$. Which set goes with which curve?

Problem 1

In Fig. 27-25, the ideal batteries have emfs $\varepsilon_{1}=12 \mathrm{~V}$ and $\varepsilon_{2}=6.0 \mathrm{~V}$. What are (a) the current, the dissipation rate in (b) resistor $1(4.0 \Omega)$ and (c) resistor $2(8.0 \Omega)$, and the energy transfer rate in (d) battery 1 and (e) battery 2? Is energy being supplied or absorbed by (f) battery 1 and (g) battery 2 ?

Problem 23

In Fig. 27-35, $R_{1}=100 \Omega, R_{2}=50 \Omega$, and the ideal batteries have emfs $\varepsilon_{1}=6.0 \mathrm{~V}, \varepsilon_{2}=5.0 \mathrm{~V}$, and $\varepsilon_{3}=4.0 \mathrm{~V}$. Find (a) the current in resistor 1 , (b) the current in resistor 2, and (c) the potential difference between points a and b.

Problem 33

In Fig. 27-44, the current in resistance 6 is $i_{6}=1.40 \mathrm{~A}$ and the resistances are $R_{1}=R_{2}=R_{3}=2.00 \Omega, R_{4}=16.0 \Omega, R=8.00 \Omega$, and $R_{6}=4.00 \Omega$. What is the emf of the ideal battery?

Problem 45

In Fig. 27-54, the resistances are $R_{1}=1.0 \Omega$ and $R_{2}=2.0$ Ω, and the ideal batteries have emfs $\varepsilon_{1}=2.0 \mathrm{~V}$ and $\varepsilon_{2}=\varepsilon_{3}=4.0 \mathrm{~V}$. What are the (a) size and (b) direction (up or down) of the current in battery 1 , the (c) size and (d) direction of the current in battery 2 , and the (e) size and (f) direction of the current in battery 3 ? (g) What is the potential difference $V_{a}-V_{b}$?

Problem 48

In Fig. 27-53, the resistors have the values $R_{1}=7.00 \Omega, R_{2}=12.0 \Omega$, and $R_{3}=4.00 \Omega$, and the ideal battery's emf is $\varepsilon=24.0 \mathrm{~V}$. For what value of R_{4} will the rate at which the battery transfers energy to the resistors equal (a) 60.0 W , (b) the maximum possible rate $P_{\text {max }}$, and (c) the minimum possible rate $P_{\min }$? What are (d) $P_{\max }$ and (e) $P_{\min }$?

Problem 61

A $15.0 \mathrm{k} \Omega$ resistor and a capacitor are connected in series, and then a 12.0 V potential difference is suddenly applied across them. The potential difference across the capacitor rises to 5.00 V in $1.30 \mu \mathrm{~s}$. (a) Calculate the time constant of the circuit. (b) Find the capacitance of the capacitor.

Problem 63

In the circuit of Fig. 27-65, $\varepsilon=1.2 \mathrm{kV}, C=6.5 \mu \mathrm{~F}, R_{1}$ $=R_{2}=R_{3}=0.73 \mathrm{M} \Omega$. With C completely uncharged, switch S is suddenly closed (at $t=0$). At $t=0$, what are (a) current i_{1} in resistor 1 , (b) current i_{2} in resistor 2 , and (c) current i_{3} in resistor 3 ? At $t=\mathrm{oo}$ (that is, after many time constants), what are (d) i_{1}, (e) i_{2}, and (f) i_{3} ? What is the potential difference V_{2} across resistor 2 at (g) $t=0$ and (h) $t=\mathrm{oo}$? (i) Sketch V_{2} versus t between these two extreme times.

Problem 72

In Fig. 27-70, the ideal battery has emf $\varepsilon=30.0 \mathrm{~V}$, and the resistances are $R_{1}=R_{2}=14 \Omega, R_{3}=$ $R_{4}=R_{5}=6.0 \Omega, R_{6}=2.0 \Omega$, and $R_{7}=1.5 \Omega$. What are currents (a) i_{2}, (b) i_{4}, (c) i_{1}, (d) i_{3}, and (e) i_{5} ?

Copyrighte 2011 John wile \& Sons, Inc. All rights reserved. halliday_9e_fig_27_70

Problem 92

Figure 27-78 shows a portion of a circuit through which there is a current $I=6.00 \mathrm{~A}$. The resistances are $R_{1}=R_{2}=2.00 R_{3}=2.00 R_{4}=4.00 \Omega$. What is the current i_{1} through resistor 1 ?

