Homework for Chapter 30

(due 11/23/22)

Questions: 2, 4, 10 Exercises & Problems: 2, 15, 19, 27, 33, 41, 45, 54, 65

Question 2

The wire loop in Fig. 30-22a is subjected, in turn, to six uniform magnetic fields, each directed parallel to the z axis, which is directed out of the plane of the figure. Figure 30-22b gives the z components B_z of the fields versus time t. (Plots 1 and 3 are parallel; so are plots 4 and 6. Plots 2 and 5 are parallel to the time axis.) Rank the six plots according to the emf induced in the loop, greatest clockwise emf first, greatest counterclockwise emf last.

Ouestion 4

Figure 30-24 shows two circuits in which a conducting bar is slid at the same speed v through the same uniform magnetic field and along a U-shaped wire. The parallel lengths of the wire are separated by 2L in circuit 1 and by L in circuit 2. The current induced in circuit 1 is counterclockwise. (a) Is the magnetic field into or out of the page? (b) Is the current induced in circuit 2 clockwise or counter- clockwise? (c) Is the emf induced in circuit 1 larger than, smaller than, or the same as that in circuit 2?

9e_fig_30_24

Question 10

Figure 30-30 gives the variation with time of the potential difference V_R across a resistor in three circuits wired as shown in Fig. 30-16. The circuits contain the same resistance R and emf ε but differ in the inductance L. Rank the circuits according to the value of L, greatest first.

Problem 2

A certain elastic conducting material is stretched into a circular loop of 12.0 cm radius. It is placed with its plane perpendicular to a uniform 0.800 T magnetic field. When released, the radius of the loop starts to shrink at an instantaneous rate of 75.0 cm/s. What emf is induced in the loop at that instant?

Problem 15

A square wire loop with 2.00 m sides is perpendicular to a uniform magnetic field, with half the area of the loop in the field as shown in Fig. 30-41. The loop contains an ideal battery with emf $\varepsilon = 20.0$ V. If the magnitude of the field varies with time according to B = 0.0420 - 0.870t, with B in teslas and t in seconds, what are (a) the net emf in the circuit and (b) the direction of the (net) current around the loop?

Problem 19

An electric generator contains a coil of 100 turns of wire, each forming a rectangular loop 50.0 cm by 30.0 cm. The coil is placed entirely in a uniform magnetic field with magnitude B = 3.50 T and with \vec{B} initially perpendicular to the coil's plane. What is the maximum value of the emf produced when the coil is spun at about an axis perpendicular to \vec{B} ?

Problem 27

As seen in Fig. 30-48, a square loop of wire has sides of length 2.0 cm. A magnetic field is directed out of the page; its magnitude is given by $B = 4.0t^2y$, where B is in teslas, t is in seconds, and y is in meters. At t = 2.5 s, what are the (a) magnitude and (b) direction of the emf induced in the loop?

Problem 33

Figure 30-52 shows a rod of length L = 10.0 cm that is forced to move at constant speed v = 5.00m/s along horizontal rails. The rod, rails, and connecting strip at the right form a conducting loop. The rod has resistance 0.400 Ω ; the rest of the loop has negligible resistance. A current i =100 A through the long straight wire at distance a = 10.0 mm from the loop sets up a (nonuniform) magnetic field through the loop. Find the (a) emf and (b) current induced in the loop. (c) At what rate is thermal energy generated in the rod? (d) What is the magnitude of the force that must be applied to the rod to make it move at constant speed? (e) At what rate does this force do work on the rod?

Problem 41

A circular coil has a 10.0 cm radius and consists of 30.0 closely wound turns of wire. An externally produced magnetic field of magnitude 2.60 mT is perpendicular to the coil. (a) If no current is in the coil, what magnetic flux links its turns? (b) When the current in the coil is 3.80 A in a certain direction, the net flux through the coil is found to vanish. What is the inductance of the coil?

Problem 45

At a given instant the current and self-induced emf in an inductor are directed as indicated in Fig. 30-57. (a) Is the current increasing or decreasing? (b) The induced emf is 17 V, and the rate of change of the current is 25 kA/s; find the inductance.

halliday 9e fig 30 57

Problem 54

Copyright © 2011 John Wiley & Sons, Inc. All rights rese

In Fig. 30-60, $\varepsilon = 100$ V, $R_1 = 10.0 \Omega$, $R_2 = 20.0 \Omega$, $R_3 = 30.0 \Omega$, and L = 2.00 H. Immediately after switch S is closed, what are (a) i_1 and (b) i_2 ? (Let currents in the indicated directions have positive values and currents in the opposite directions have negative values.) A long time later, what are (c) i_1 and (d) i_2 ? The switch is then reopened. Just then, what are (e) i_1 and (f) i_2 ? A long time later, what are (g) i_1 and (h) i_2 ?

Problem 65

For the circuit of Fig. 30-16, assume that i = 10.0 V, $R = 6.70 \Omega$, and L = 5.50 H. The ideal battery is connected at time t = 0. (a) How much energy is delivered by the battery during the first 2.00 s? (b) How much of this energy is stored in the magnetic field of the inductor? (c) How much of this energy is dissipated in the resistor?

