Chapter 24

Electric Potential

24.1 What is Physics?:

Experimentally, physicists and engineers discovered that the electric force is conservative and thus has an associated electric potential energy.

The motivation for associating a potential energy with a force is that we can then apply the principle of the conservation of mechanical energy to closed systems involving the force.

Example, Work and potential energy in an electric field:	
Electrons are continually being knocked out of air molecules in the atmosphere by cosmic-ray particles coming in from space, Once released, each electron experiences an electrostatic force \vec{F} due to the electric field \vec{E} that is produced in the atmosphere by charged particles already on Earth. Near Earth's surface the electric field has the magnitude $E=150 \mathrm{~N} / \mathrm{C}$ and is directed downward. What is the change ΔU in the electric potential energy of a released electron when the electrostatic force causes it to move vertically upward through a distance $d=520 \mathrm{~m}$ (Fig. 24-1)?	(2) The work done by a constant force \vec{F} on a particle undergoing a displacement \vec{d} is $\begin{equation*} W=\vec{F} \cdot \vec{d} . \tag{24-3} \end{equation*}$ (3) The electrostatic force and the electric field are related by the force equation $\vec{F}=q \vec{E}$, where here q is the charge of an electron $\left(=-1.6 \times 10^{-19} \mathrm{C}\right)$. Calculations: Substituting for \vec{F} in Eq. $24-3$ and taking the dot product yield
KEY IDEAS	$W=q \vec{E} \cdot \vec{d}=q E d \cos \theta$,
(1) The change ΔU in the electric potential energy of the electron is related to the work W done on the electron by the electric field. Equation 24-1 $(\Delta U=-W)$ gives the relation. Fig. 24-1 An electron in the atmosphere is moved upward through displacement \vec{d} by an electrostatic force \vec{F} due to an electric field \vec{E}.	where θ is the angle between the directions of \vec{E} and \vec{d}. The field \vec{E} is directed downward and the displacement \vec{d} is directed upward; so $\theta=180^{\circ}$. Substituting this and other data into Eq. $24-4$, we find $\begin{aligned} W & =\left(-1.6 \times 10^{-19} \mathrm{C}\right)(150 \mathrm{~N} / \mathrm{C})(520 \mathrm{~m}) \cos 180^{\circ} \\ & =1.2 \times 10^{-14} \mathrm{~J} . \end{aligned}$ Equation 24-1 then yields $\Delta U=-W=-1.2 \times 10^{-14} \mathrm{~J} .$ (Answer) This result tells us that during the 520 m ascent, the electric potential energy of the electron decreases by $1.2 \times 10^{-14} \mathrm{~J}$.

The potential energy per unit charge at a point in an electric field is called the electric The electric potential difference V between any two points i and f in an electric field is equal

$$
\Delta V=V_{f}-V_{i}=\frac{U_{f}}{q}-\frac{U_{i}}{q}=\frac{\Delta U}{q} .=-\frac{W}{q} \quad \text { (potential differerece definec). }
$$

The potential difference between two points is thus the negative of the work done by the electrostatic force to move a unit charge from one point to the other.

If we set $U_{i}=0$ at infinity as our reference potential energy, then the electric potential V must defined to be

$$
V=-\frac{W_{\infty}}{q} \quad \text { (potential defined) }
$$

Here W_{∞} is the work done by the electric field on a charged particle as that particle

The SI unit for potential is the joule per coulomb. This combination is called the volt (abbreviated V). 1 volt $=1$ joule per coulomb.

24.3 Electric Potential: Units:

This unit of volt allows us to adopt a more conventional unit for the electric field, E , which is expressed in newtons per coulomb.

We can now define an energy unit that is a convenient one for energy measurements in the atomic/subatomic domain: One electron-volt (eV) is the energy equal to the work required to move a single elementary charge e, such as that of the electron or the proton, through a potential difference of exactly one volt. The magnitude of this work is $q \Delta V$, and

[^0]$$
W_{\mathrm{app}}=q \Delta V .
$$

24.4 Equipotential Surfaces:

Adjacent points that have the same electric potential form an equipotential surface, which can be either an imaginary surface or a real, physical surface.
No net work W is done on a charged particle by an electric field when the particle moves between two points i and f on the same equipotential surface.
No work is done along
this path on an
equipotential surface.

24.7 Potential Due to a Group of Point Charges:

The net potential at a point due to a group of point charges can be found with the help of the superposition principle. First the individual potential resulting from each charge is considered at the given point. Then we sum the potentials.

For n charges, the net potential is
$V=\sum_{i=1}^{n} V_{i}=\frac{1}{4 \pi \varepsilon_{0}} \sum_{i=1}^{n} \frac{q_{i}}{r_{i}} \quad(n$ point charges $)$.

Example, Net Potential of Several Charger	Particles:
What is the electric potential at point P, located at the center of the square of point charges shown in Fig. 24-8a? The distance d is 1.3 m , and the charges are $\begin{array}{ll} q_{1}=+12 \mathrm{nC}, & q_{3}=+31 \mathrm{nC}, \\ q_{2}=-24 \mathrm{nC}, & q_{4}=+17 \mathrm{nC} . \end{array}$ KEY IDEA The electric potential V at point P is the algebraic sum of the electric potentials contributed by the four point charges. (a) Fig. 24-8 (a) Four point charges are held fixed at the corners of a square. (b) The closed curve is a cross section, in the plane of the figure, of the equipotential surface that contains point P.(The curve is drawn only roughly.)	(Because electric potential is a scalar, the orientations of the point charges do not matter.) Calculations: From Eq. 24-27, we have $V=\sum_{i=1}^{4} V_{i}=\frac{1}{4 \pi \varepsilon_{0}}\left(\frac{q_{1}}{r}+\frac{q_{2}}{r}+\frac{q_{3}}{r}+\frac{q_{4}}{r}\right) .$ The distance r is $d / \sqrt{2}$, which is 0.919 m , and the sum of the charges is $\begin{aligned} \begin{aligned} q_{1}+q_{2}+q_{3}+q_{4} & =(12-24+31+17) \times 10^{-9} \mathrm{C} \\ & =36 \times 10^{-9} \mathrm{C} \end{aligned} \\ \text { Thus, } \quad \begin{aligned} V & =\frac{\left(8.99 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}^{2}\right)\left(36 \times 10^{-9} \mathrm{C}\right)}{0.919 \mathrm{~m}} \\ & \approx 350 \mathrm{~V} . \end{aligned} \end{aligned}$ (Answer) Close to any of the three positive charges in Fig. 24-8a, the potential has very large positive values. Close to the single negative charge, the potential has very large negative values. Therefore, there must be points within the square that have the same intermediate potential as that at point P. The curve in Fig. $24-8 b$ shows the intersection of the plane of the figure with the equipotential surface that contains point P. Any point along that curve has the same potential as point P.

24.9 Potential Due to a Continuous Charge Distribution: Charged Disk:
In Fig. 24-13, consider a differential element consisting of a flat

\[\)| ring of radius $R \text { ' and radial width } d R^{\prime} \text {. Its charge has magnitude }$ |
| :--- |
| $d q\left(2 \pi R^{\prime}\right)\left(d R^{\prime}\right)$ |

\]

$d V=\frac{1}{4 \pi \varepsilon_{0}} \frac{d q}{r}=\frac{1}{4 \pi \varepsilon_{0}} \frac{\sigma\left(2 \pi R^{\prime}\right)\left(d R^{\prime}\right)}{\sqrt{z^{2}+R^{\prime 2}}}$

Fig. 24-13 A plastic disk of radius R, charged on its top surface to a uniform surface charge density σ. We wish to find the
potential V at point P on the central axis of the disk.

The net potential at P can be found by adding (via integration) the contributions of all the rings from $R^{\prime}=0$ to $R^{\prime}=R$.

$$
V=\int d V=\frac{\sigma}{2 \varepsilon_{0}} \int_{0}^{R} \frac{R^{\prime} d R^{\prime}}{\sqrt{z^{2}+R^{\prime 2}}}=\frac{\sigma}{2 \varepsilon_{0}}\left(\sqrt{z^{2}+R^{2}}-z\right)
$$

24.10 Calculating the Field from the Potential:	
Suppose that a positive test charge q_{0} moves through a displacement from one equipotential surface to the adjacent surface. The work the electric field does on the test charge during the move is $-q_{0} d V$.	
The work done by the electric field may also be written as the scalar product or $\left(q_{0} \vec{E}\right) \cdot d \vec{s} \quad=q_{0} E(\cos \theta) d s$.	$\begin{array}{r} - \text { Two } \\ \text { equipotential } \\ \text { surfaces } \end{array}$
Therefore, $\quad-q_{0} d V=q_{0} E(\cos \theta) d s$,	Fig. 24-14 A test charge q_{0} moves a
That is, $\quad E \cos \theta=-\frac{d V}{d s}$	distance $d \vec{s}$ from one equipotential surface to another. (The separation between the surfaces has been exaggerated for clarity.)
Since $E \cos \theta$ is the component of \mathbf{E} in the direction of $\mathbf{d s}$, $E_{s}=-\frac{\partial V}{\partial s}$	The displacement $d \vec{s}$ makes an angle θ with the direction of the electric field \vec{E}.
If we take the s axis to be, in turn, the x, y, and z axes, the	
x, y, and z components of \mathbf{E} at any point are $\quad E_{x}=-\frac{\partial V}{\partial x}$;	$E_{y}=-\frac{\partial V}{\partial y} ; \quad E_{z}=-\frac{\partial V}{\partial z}$.

Therefore, the component of E in any direction is the negative of the rate at which the electric potential changes with distance in that direction.

Example, Finding the Field from the Potential:
The electric potential at any point on the central axis of a uniformly charged disk is given by Eq. 24-37,

$$
V=\frac{\sigma}{2 \varepsilon_{0}}\left(\sqrt{z^{2}+R^{2}}-z\right) .
$$

Starting with this expression, derive an expression for the electric field at any point on the axis of the disk.

We want the electric field \vec{E} as a function of distance z along the axis of the disk. For any value of z, the direction of \vec{E} must be along that axis because the disk has circular svmmetry about that axis. Thus, we want the component E_{z} of \vec{E} in the direction of z. This component is the negative of the rate at which the electric potential changes with distance z

Calculation: Thus, from the last of Eqs. 24-41, we can write

$$
\begin{aligned}
E_{z} & =-\frac{\partial V}{\partial z}=-\frac{\sigma}{2 \varepsilon_{0}} \frac{d}{d z}\left(\sqrt{z^{2}+R^{2}}-z\right) \\
& =\frac{\sigma}{2 \varepsilon_{0}}\left(1-\frac{z}{\sqrt{z^{2}+R^{2}}}\right) . \quad \text { (Answer) }
\end{aligned}
$$

Example, Conservation of Mechanical Energy with Electric Potential Energy	
An alpha particle (two protons, two neutrons) moves into a stationary gold atom (79 protons, 118 neutrons), passing through the electron region that surrounds the gold nucleus	
like a shell and headed directly toward the nucleus (Fig. 24-17). The alpha particle slows until it momentarily	
	ative charge and, as discussed in Section $23-9$, such a shel produces zero electric field in the space it encloses. The al
stops when its center is at radial distance $r=9.23 \mathrm{fm}$ from the	
nuclear center. Then it moves back along its incoming path. (Because the gold nucleus is much more massive than the alpha particle, we can assume the gold nucleus does not	in the nucleus, which produces a repulsive force on the pro tons within the alpha particle.
	tons within the alpha particle. As the incoming alpha particle is slowed by this repulsivg
move.) What was the kinetic energy K_{i} of the alpha particle when it was initially far away (hence external to the gold atom)? Assume that the only force acting between the alpha particle and the gold nucleus is the (electrostatic) Coulomb force.	, its kinetic energy is transferred to electric potentia
	ergy of the system. The transfer is complete when the alpha rticle momentarily stops and the kinetic energy is $K_{f}=0$.
Fig. 24-17 An alpha particle, traveling head-on toward the center of a gold nucleus, comes to a momentary stop (at which time all its kinetic energy has been transferred to electric potential energy)	energy tells us that ${ }^{\text {a }}+U_{i}=K_{f}+U_{f}$.
	We know two values: $U_{i}=0$ and $K_{f}=0$. We also know tha the potential energy U_{f} at the stopping point is given by th right side of Eq. 24-43, with $q_{1}=2 e, q_{2}=79 e$ (in which e i the elementary charge, $1.60 \times 10^{-19} \mathrm{C}$), and $r=9.23 \mathrm{fm}$ Thus, we can rewrite Eq. 24-44 as
Reasoning: When the alpha particle is outside the atom, he system's initial electric potential energy U_{i} is zero beause the atom has an equal number of electrons and proons, which produce a net electric field of zero. However, once the alpha particle passes through the electron region furrounding the nucleus on its way to the nucleus, the elecric field due to the electrons goes to zero. The reason is that	
	$\pi \varepsilon_{0} 9.23$
	$\left(8.99 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}^{2}\right)(158)\left(1.60 \times 10^{-19} \mathrm{C}\right)^{2}$
	+ $40^{-12} \mathrm{~J}=24.6 \mathrm{MeV}$. (Answer)

On nonspherical conductors, a surface charge does not distribute itself uniformly over the surface of the conductor. At sharp points or edges, the surface charge density-and thus the external electric field, -may reach very high values. The air around such sharp points or edges may become ionized, producing the corona discharge that golfers and mountaineers see on the tips of bushes, golf clubs, and rock hammers when thunderstorms threaten. Such corona discharges are often the precursors of lightning strikes. In such circumstances, it is wise to enclose yourself in a cavity inside a conducting shell, where the electric field is guaranteed to be zero. A car (unless it is a convertible or made with a plastic body) is almost ideal

Fig. 24-20 An uncharged conductor is suspended in an external electric field. The free electrons in the conductor distribute themselves on the surface as shown, so as to reduce the net electric field inside the conductor to zero and make the net field at the surface perpendicular to the surface.

If an isolated conductor is placed in an external electric field, all points of the conductor still come to a single potential regardless of whether the conductor has an excess charge.

The free conduction electrons distribute themselves on the surface in such a way that the electric field the produce at interior points cancels the external electric field that would otherwise be there

Furthermore, the electron distribution causes the net electric field at all points on the surface to be perpendicular to the surface. If the conductor in Fig. 24-20 could be somehow removed, leaving the surfac charges frozen in place, the internal and external electric field would remain absolutely unchanged.

[^0]: 24.3 Electric Potential: Work done by an Applied Force:

 If a particle of charge q is moved from point i to point f in an electric field by applying a force to it, the applied force does work $W_{a p p}$ on the charge while the electric field does work W on it. The change K in the kinetic energy of the particle is
 $\Delta K=K_{f}-K_{i}=W_{\text {app }}+W$.
 If the particle is stationary before and after the move, Then K_{f} and K_{i} are both zero.

 $$
 W_{\mathrm{app}}=-W \text {. }
 $$

 Relating the work done by our applied force to the change in the potential energy of the particle during the move, one has

 $$
 \Delta U=U_{f}-U_{i}=W_{\mathrm{app}} .
 $$

 We can also relate $W_{a p p}$ to the electric potential difference ΔV between the initial and final locations of the particle:

