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24.1 What is Physics?:

Experimentally, physicists and engineers
discovered that the electric force is conservative
and thus has an associated electric potential

Chapter 24 e

The motivation for associating a potential energy
Electric Potential with a force is that we can then apply the
principle of the conservation of mechanical
energy to closed systems involving the force.

24.2: Electric Potential Energy Example, Work and potential energy in an electric field:
When an electrostatic force acts between two or more charged particles within a [Electrons are continually being knocked out of air moleculesin  (2) The work done by a constant force F on a particle under-
system ofparticles we can assign an electric potential energy U to the Ssystem. the atmosphere by cosmic-ray particles coming in from space, ~ goinga displacement d is
5

Once released. each electron experiences an electrostatic force F* W=Fid 243
due to the electric field £ that is produced in the atmosphere by =hd (243)

If the system changes its configuration from an initial state i to a different final charged particles already on Earth. Near Earth's surface the elec-  (3) The electrostatic force and the electric field are related
ric field has the magnitude E = 150 N/C and is directed down- by the force equation F' = gE. where here ¢ is the charge

state f; the electrostatic force does work I on the particles. If the resulting ward, What isthe change AU in the electric potential energy ofa ©f an electron (= ~1.6 X 107 C).
change is AU, 5 then AU=U, /p = U’ = —W. released electron when the electrostatic force causes it to move .
vertically upward through a distance d = 520 m (Fig.24-1)? Calculations: Substituting for Fin Eq.24-3 and taking the
. . . . : - - dot product yield
As with other conservative forces, the work done by the electrostatic force is W = - = qEd cos 6, (044)
path independent. (1) The change AU in the electric potential energy of the ~ Where @is the angle between the directions of E and d.The

electron is related to the work W done on the electron by the ~ field E is directed downward and the displacement d is

. . . electric field. Equation 24-1 (AU = —W) gives the relation. directed upward; so # = 180°. Substituting this and other
Usuall}{ the r§ference copﬁguratlon 9f a system of charged particles is taken to datainto Eq. 24-4, we find
be that in \A{hlch the particles are all mﬁmFely separated from one another. The W = (=16 X 107 C)(150 N/C)(520 m) cos 180°
corresponding reference potential energy is usually set be zero. Therefore, 2 2 7 — 12 X 10-4J.
U=-W. . Equation 24-1 then yields
=-W=-12Xx10"41. S
Fig. 24-1  Anelectron in the atmosphere is moved upward Ay w7 L 0= (i)
through Ah:plic::lm:nl d by an electrostatic force F due to an This result tells us that during the 520 m ascent, the electric
lectric field E. potential energy of the electron decreases by 1.2 X 107141,
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24.3 Electric Potential:

The potential energy per unit charge at a point in an electric field is called the electric
potential V' (or simply the potential) at that point. This is a scalar quantity. Thus, v = —,
q

The electric potential difference V between any two points 7 and fin an electric field is equal
to the difference in potential energy per unit charge between the two points. Thus,
[ 1
AV =V, - '=_f_i =£ - W
q

O (potential difference defined).
q q q

The potential difference between two points is thus the negative of the work done by the
electrostatic force to move a unit charge from one point to the other.

If we set U, =0 at infinity as our reference potential energy, then the electric potential V must
also be zero there. Therefore, the electric potential at any point in an electric field can be
defined to be o W,

(potential defined)
G

Here W, is the work done by the electric field on a charged particle as that particle
moves in from infinity to point /.

The ST unit for potential is the joule per coulomb. This combination is called the volt

(abbreviated V). Lvolt = 1 joule per coulomb.

24.3 Electric Potential: Units:

This unit of volt allows us to adopt a more conventional unit
for the electric field, E, which is expressed in newtons per

coulomb.
N 1V-C 17
'N’C'(IF)( 1] )(IN-m)

=1V/m.

We can now define an energy unit that is a convenient one for
energy measurements in the atomic/subatomic domain: One
electron-volt (eV) is the energy equal to the work required to
move a single elementary charge e, such as that of the
electron or the proton, through a potential difference of
exactly one volt. The magnitude of this work is gAV, and

eV = e(1V)
= (160 X 107 C)(1 J/C) = 1.60 X 1071,

24.3 Electric Potential: Work done by an Applied Force:

If a particle of charge ¢ is moved from point i to point f'in an electric field by
applying a force to it, the applied force does work 17, on the charge while the
electric field does work W on it. The change K in the kinetic energy of the particle is

AK=K;— Ki= Wy + W.
If the particle is stationary before and after the move, Then K and K are both zero.

Wiopp = —W.

Relating the work done by our applied force to the change in the potential energy of
the particle during the move, one has

AU =U;— U= Wy

We can also relate 7, to the electric potential difference AV between the initial and

app

final locations of the particle:

Wy = g AV.

24.4 Equipotential Surfaces:

Adjacent points that have the same electric potential form an equipotential surface,
which can be either an imaginary surface or a real, physical surface.

No net work W is done on a charged particle by an electric field when the particle
moves between two points / and f'on the same equipotential surface.

Equal work is done along
these paths between the
same surfaces.

No work is done along
this path on an
equipotential surface.

surfaces at electric potentials V/;=10\

paths along which a test charge may
move are shown. Two electric field

lines are also indicated.
No work is done along this path
that returns to the same surface.

Fig. 24-2 Portions of four equipotential

V,=80 V,V; =60 ¥, and V,, =40 V. Four

0V,
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24.4 Equipotential Surfaces:

Equipotential surface
/ / Field line

(a) *)

- Fig. 24-3 Electric field lines (purple) and
cross sections of equipotential surfaces
(gold) for (@) a uniform electric field, (b)

24.5 Calculating the Potential from the Field:

Path Field line

Fig. 24-4 A test charge ggmoves
from point i to point f along the path
shown in a nonuniform electric field.
During a displacement d5”, an elec-
trostatic force gy E acts on the test
charge. This force points in the direc-

dW = F+d5.

For the situation of Fig. 24-4, dW = q[,f' ds’.

f
Total work: W= [IOJ E.dv.

S\t
Vi= V= —| E-as.

Thus, the potential difference V-V, between any two points
iand fin an electric field is equal to the negative of the line
integral from i to £, Since the electrostatic force is
conservative, all paths yield the same result.

If we set potential V; =0, then

1 the field due to a point charge, and (c) the
{ field due to an electric dipole.

tion of the field line at the location of V=-—

the test charge.

the zero potential at infinity.

E-ds,

i
This is the potential ¥ at any point f'in the electric field
relative to the zero potential at point 7. If point i is at
infinity, then this is the potential / at any point frelative to

(a) Figure 24-5a shows two points i and fin a uniform electric
field E. The points lie on the same electric field line (not
shown) and are separated by a distance d. Find the potential
difference V; — V; by moving a positive test charge g, fromi to
£ along the path shown, which is parallel to the field direction.

[Calculations: We begin by mentally moving a test charge
7o along that path, from initial point i to final point f. As we
move such a test charge along the path in Fig. 24-5a, its dif-
ferential displacement d5" always has the same direction
s E.Thus, the angle § between E and d5” is zero and the dot
product in Eq. 24-18 is

E-ds = Edscos 0 = E ds. (24-20)
[Equations 24-18 and 24-20 then give us

T, 7
Vi;=V,=—| E-ds=—| Eds. (24-21)

ince the field is uniform, E is constant over the path and
kan be moved outside the integral. giving us

f
V.- V.=-E [ ds = —FEd, (Answer)

Example, Finding the Potential change from the Electric Field:

The electric field points from

higher potential to lower potential

JR iHigher potential _

Lower potential

(b) Now find the potential difference V;— V; by moving the
positive test charge g, from i to f along the path icf shown in
Fig. 24-5b.

Calculations: The Key Idea of (a) applies here too, except
now we move the test charge along a path that consists of
two lines: ic and cf. At all points along line ic, the displace-
ment d5” of the test charge is perpendicular to E. Thus, the
langle @ between E and d5” is 90°, and the dot product E - ds”
is 0. Equation 24-18 then tells us that points i and c are at the
same potential: V, — V; = 0.

For line cfwe have ¢

and, from Eq. 24-18,

I s
V- V= —f E-ds = —f E(cos 45°) ds a4

T
= —E(cos 45°) I ds.
The integral in this equation is just the length of line cf:
from Fig. 24-5b. that length is d/cos 45°. Thus,

Y
V= V= ~E(cos 45°) S = ~Ed.(Answer)

Example, Finding the Potential change from the Electric Field:

The field is perpendicular to this ic path,
so there is no change in the potential.

(b

The field has a component
along this cf path, so there
isa change in the potential.
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24.6 Potential Due to a Point Charge:

A positively charged particle produces a positive
electric potential. A negatively charged particle
produces a negative electric potential.

Consider a point P at distance R from a fixed particle of positive
charge ¢. Imagine that we move a positive test charge g, from point
P to infinity. The path chosen can be the simplest one— a line that
extends radially from the fixed particle through P to infinity.

To find the potential of
the charged particle,

we move this test charge
out to infinity.

24.7 Potential Due to a Group of Point Charges:

The net potential at a point due to a group of point
charges can be found with the help of the
superposition principle. First the individual potential
resulting from each charge is considered at the given
point. Then we sum the potentials.

For n charges, the net potential is

vf—v,:—f Edr.
B

If V;=0 (at ) and V; =V (at R). Then, for the magnitude of the

electric field at the site of the test charge,
1 q
dmey 1P

q 1 q
—dr=
dmeq Jn P 4mey

That gives: 0—V=-—
L a
4mey R’
1 a
4mey 1

Switching R to 7, V=

[

]R Fig. 24-6 The positive point charge ¢
produces an electric field £ and an electric
potential V at point P.We find the potential
by moving a test charge g from P to infin-
ity. The test charge is shown at distance r
from the point charge, during differential

displacement d5.

i=1

T 1 n 1
V=2w=—§1’,f (n point charges).

What is the electric potential at point P, located at the cen-
ter of the square of point charges shown in Fig. 24-84? The
distance d is 1.3 m, and the charges are

@ = +12nC,
¢ = ~241C,

KEY IDEA

The electric potential V at point P is the algebraic sum of
the electric potentials contributed by the four point charges.

4= +31nC,

@ = +17nC.

o

\

/ oy
/o V=350V .

Fig. 24-8 (a) Four point charges are held fixed at the cor-
ners of a square. (b) The closed curve is a cross section, in the
plane of the figure. of the equipotential surface that contains
point P. (The curve is drawn only roughly.)

Example, Net Potential of Several Charged Particles:

(Because electric potential is a scalar, the orientations of the
point charges do not matter.)

Calculations: From Eq.24-27, we have

4
VoS-t (£+ﬁ+£+£)
daey \ 1 r r r

The distance 7 is dA'2, which is 0.919 m, and the sum of the
charges is

G+ @tatq=(12-24+31+17) X 107°C

=36 x107C.
) (899 X 10°N-m¥C2)(36 X 10°C)
Thus, V= 0919m
~350V. (Answer)

Close to any of the three positive charges in Fig. 24-8a, the
potential has very large positive values. Close to the single nega-
tive charge, the potential has very large negative values.
Therefore, there must be points within the square that have the
same intermediate potential as that at point P. The curve in Fig.
24-8b shows the intersection of the plane of the figure with the
equipotential surface that contains point P. Any point along that
curve has the same potential as point P.

Example, Potential is not a Vector:

(a) In Fig. 24-9a, 12 electrons (of charge —e) are equally
spaced and fixed around a circle of radius R. Relative to V' =
0 at infinity. what are the electric potential and electric field at
the center C of the circle due to these electrons?

KEY IDEAS

(1) The electric potential V at C is the algebraic sum of the
electric potentials contributed by all the electrons. (Because
electric potential is a scalar, the orientations of the electrons
do not matter.) (2) The electric field at C'is a vector quantity
and thus the orientation of the electrons is important.

Calculations: Because the electrons all have the same neg-
ative charge —e and are all the same distance R from C, Eq.
24-27 gives us

1 e

- (Answer) (24-28)

V=-—
124111:0 R

Because of the symmetry of the arrangement in Fig.
24-9a, the electric field vector at C due to any given electron
is canceled by the field vector due to the electron that is dia-
metrically opposite it. Thus, at C,

E=o. (Answer)

Potential is a scalar and
orientation is irrelevant.

(a)

Fig. 24-9 (a) Twelve electrons uniformly spaced around a circle.
(b) The electrons nonuniformly spaced along an arc of the original
circle.
(b) If the electrons are moved along the circle until they are
nonuniformly spaced over a 120° arc (Fig. 24-9b), what then
is the potential at C? How does the electric field at C change
(if atall)?

Reasoning: The potential is still given by Eq. 24-28, because
the distance between C and each electron is unchanged and
orientation is irrelevant. The electric field is no longer zero,
however, because the arrangement is no longer symmetric.
A net field is now directed toward the charge distribution.
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24.8 Potential Due to an Fig.24-10 (a)Point Pisadistancer -

i~ Di . from the midpoint O of a dipole. The line
Electric Dipole: OP makes an angle 0 with the dipole axis.
(b) If Pis far from the dipole, the lines of
lengths r(,y and r(_) are approximately par-
allel to the line of length r, and the dashed
black line is approximately perpendicular
to the line of length 7.

At P, the positive point charge (at distance 7, ) sets up potential V;,, and the “76
negative point charge (at distance 7)) sets up potential ¥/, Then the net [
potential at P is: d 0

V=3 W=V + V= — (" +—L L

i=1 4e Ii+) -/ '?
=9 '0~1n (a)
dmeq  Feyiey :
Naturally occurring dipoles are quite small; so we are usually interested only %
in points that are relatively far from the dipole, such that d«r, where d is the ’ ,
distance between the charges. If p = ¢d, ) Ve
ry=rey=~dcos@ and r_yr,=~
C y=-—1_ ﬁ:‘_“

V=

C T
1 pcos@ S
e (clesticdipole)

24.8 Induced Dipole Moment:

Fig. 24-11 (a) An atom, showing the

positively charged nucleus (green) and

the negatively charged electrons (gold

shading).The centers of positive and

negative charge coincide. (b) If the atom is @
placed in an external electric field E,

the electron orbits are distorted so that the

centers of positive and negative charge The electric field shifts

no longer coincide. An induced dipole (a the positive and negative
moment p appears. The distortion is charges, creating a dipole.
greatly exaggerated here. >

_pp(.p

()

24.9 Potential Due to a Continuous Charge Distribution: Line of Charge:

Fig. 24-12 (a) A thin, uniformly charged rod produces an electric potential V at point P. () An element can
be treated as a particle. (¢c) The potential at P due to the element depends on the distance . We need to sum
the potentials due to all the elements, from the left side (d) to the right side (e).

This charged rod

1 is obviously not a 1P s Hereis how to find
[ particle. W But we can treat this [ distance rfrom the
" 4 elementasaparticle. g r element.

1; — —ll—dx
(@ ® @
g o op If & is the charge per unit length, then the charge on
. E"ZE’EES&E;?: :Ie l\’\ length dxis:  dg = Adx. ‘
Lj Lj \\ r=(x2+d*)"”
0 Lo the loftmost | Hore is the rightmost L 1 dq 1 A dx

dV = = S I
4mey 1 4me, (2 + d2)\2

element. element.
(d) (©

. Lo A A : dx
= |dv = ————dx = ey =
o dmey (F + d?) dmey Jo (A + dH'?

L+ (L2 +d3)\2
d i

1l|(\ + (7 +t"‘b”}|}

= L. In( L + (L2 + @)
TE(

24.9 Potential Due to a Continuous Charge Distribution: Charged Disk:

: Every charge element
in the ring contributes
to the potential at P.

In Fig. 24-13, consider a differential element consisting of a flat
ring of radius R "and radial width dR . Its charge has magnitude

dgq = oc(2@R")(dR")

dR)‘_ The contribution of this ring to the electric potential at P is:
1 d 1 oQaR')(dR’
av = a _ @mR)(dR")
‘ dmey 1 dmey 2+ R?
Fig. 24-13 A plastic disk of radius R,
charged on its top surface to a uniform sur- The net potential at P can be found by adding (via integration)
face charge density . We wish to find the the contributions of all the rings from R’=0to R'= R:
potential V at point P on the central axis of <
the disk. o [F RdR (A e
\‘afgfl‘=—‘ I%" —=—N2+R-2)
260 o N2+ R? 28
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24.10 Calculating the Field from the Potential:

Suppose that a positive test charge g, moves through a
displacement from one equipotential surface to the
adjacent surface. The work the electric field does on the
test charge during the move is -g, dV.

The work done by the electric field may also be written as N e
the scalar product or (qE) +dS  =q,E(cos 6) ds. equipotential

surfaces
Therefore, —qodV = qyE(cos 6) ds,

Fig. 24-14 A test charge gymoves a
. av distance d from one equipotential surface
That is, Ecos 6 = i toanother. (The separation between the
@ surfaces has been exaggerated for clarity.)
Since E cos @is the component of E in the direction of ds, The displacement d5 makes an angle § with
av the direction of the electric field E.
E=—"
as

If we take the s axis to be, in turn, the x, y, and z axes, the
X, ¥, and z components of E at any point are E av

az

av 5 av

ax ay

Therefore, the component of E in any direction is the negative of the rate at which the
electric potential changes with distance in that direction.

Example, Finding the Field from the Potential:

The electric potential at any point on the central axis of a
uniformly charged disk is given by Eq.24-37.
R -

o
V=—mo z).

2es ( )
Starting with this expression, derive an expression for the
electric field at any point on the axis of the disk.

KEY IDEAS

We want the electric field E as a function of distance z along
the axis of the disk. For any value of z, the direction of E
must be along that axis because the disk has circular symme-
try about that axis. Thus, we want the component E, of E in
the direction of z. This component is the negative of the rate
at which the electric potential changes with distance z.

Calculation: Thus, from the last of Eqs.24-41, we can write

\4
g=-Y__ o d o m_y

2gy dz

.

Z
=== (] - (Answer)

24.11 Electric Potential Energy of a System of Point Charges:

The electric potential energy of a system of fixed point
charges is equal to the work that must be done by an
external agent to assemble the system, bringing each
charge in from an infinite distance.

» Figure 24-15 shows two point charges ¢, and q,, separated by a

@ distance - When we bring ¢, in from infinity and put it in place, we
do no work because no electrostatic force acts on g,. However,
when we next bring ¢, in from infinity and put it in place, we must
do work because ¢, exerts an electrostatic force on g, during the
move.

N

r

Fig. 24-15 Two ch:
fixed distance r apart.

ges held a

The work done is ¢,¥, where Vis the potential that has been set up by ¢, at the point where we put g,.

1
Vo a
C dmey 1
z ; I aq
U=W=qgV=
- dmey

Example, Potential Energy of a System of Three Charged Particles:
[Figure 24-16 shows three point charges held in fixed positions

by forces that are not shown. What is the clectric potential

energy U of this system of charges? Assume that d = 12 cm

and that

q=+q, ¢=—4q. and q;=+2q,

®
Energy is associated
with each pair of
J 4 particles.
—1—@
aQ k]

Fig. 24-16  Three charges are fixed at the vertices of an equilateral

triangle. What is the electric potential energy of the system?

Calculations: Let’s mentally build the system of Fig.

24-16. starting with one of the point charges, say g,.in place ~ charges. This sum (which is actually independent of the orde
and the others at infinity. Then we bring another one, say g,, ~ in which the charges are brought together) is

in l‘n?m infinity and put it iq place. From Eq. 24f43 wnh d U=Us+ Us+ Uy

substituted for r, the potential energy Uy, associated with N -

the pair of point charges ¢, and ¢, is _ 1 ((+q)(*4q) L ot (*4ll>(+2'1))
oL T d @ d
2 4me, d ___10¢
Aaeyd

[We then bring the last point charge ¢ in from infinity and
put it in place. The work that we must do in this last step is _ (899 X 10° N-m*C?)(10)(150 X 107° C)?
equal to the sum of the work we must do to bring g3 near q; 0.12m

land the work we must do to bring it near g,. From Eq.24-43,
with d substituted for r, that sum is

=-17%x102J = -17ml. (Answer
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An alpha particle (two protons, two neutrons) moves into a
stationary gold atom (79 protons, 118 neutrons). passing
through the electron region that surrounds the gold nucleus
like a shell and headed directly toward the nucleus
(Fig. 24-17). The alpha particle slows until it momentarily
stops when its center is at radial distance r = 9.23 fm from the
nuclear center. Then it moves back along its incoming path.
(Because the gold nucleus is much more massive than the
alpha particle, we can assume the gold nucleus does not
move.) What was the kinetic energy K; of the alpha particle
Wwhen it was initially far away (hence external to the gold
atom)? Assume that the only force acting between the alpha
particle and the gold nucleus is the (electrostatic) Coulomb
force.

Fig.24-17 Analpha par-

ticle, traveling head-on toward ]-7 '—-I
——

the center of a gold nucleus,

comes to a momentary stop Alpha
(at which time all its kinetic particle
energy has been transferred Gold

to electric potential energy) nucleus

and then reverses its path.

Reasoning: When the alpha particle is outside the atom,
he system’s initial electric potential energy U is zero be-
ause the atom has an equal number of electrons and pro-
ons, which produce a net electric field of zero. However,
nce the alpha particle passes through the electron region
urrounding the nucleus on its way to the nucleus, the elec-
ric field due to the electrons goes to zero. The reason is that

Example, Conservation of Mechanical Energy with Electric Potential Energy:

the electrons act like a closed spherical shell of uniform neg

ative charge and, as discussed in Section 23-9, such a shel

produces zero electric field in the space it encloses. The al

pha particle still experiences the electric field of the protons
in the nucleus, which produces a repulsive force on the pro
tons within the alpha particle.

As the incoming alpha particle is slowed by this repulsivd
force, its Kinetic energy is transferred to electric potentia
energy of the system. The transfer is complete when the alphd
particle momentarily stops and the kinetic energy is K, = 0.

Calculations: The principle of conservation of mechanical
energy tells us that

K+ U;=K;+ Uy (24-44
We know two values: U; = 0 and K, = 0. We also know tha
the potential energy Uy at the stopping point is given by thg
right side of Eq. 24-43, with g, = 2e. g, = 79 (in which e i
the elementary charge, 1.60 X 107 C), and r=9.23 fm
Thus. we can rewrite Eq.24-44 as
1 (2¢)(79)

K,
4me, 9231m

_ (899 X 10° N-m%C?)(158)(1.60 X 107" C)?
B 923 X 105 m

=3.94 X 10712J = 24.6 MeV. (Answer

24.12 Potential of a Charges, Isolated Conductor:

=

W4 An excess charge placed on an isolated conductor will distribute itself on the surface of
that conductor so that all points of the conductor—whether on the surface or inside—
come to the same potential. This is true even if the conductor has an internal cavity and
even if that cavity contains a net charge.

L.
Vi=Vi=—| E-ds’

Since for all points E = ) within a conductor, it follows directly that
V=V for all possible pairs of points i and fin the conductor.

We know that

2

8
=
) Fig. 24-18 (a) A plot of V(r) both
! ‘2 34 inside and outside a charged spheri-
’4"7" cal shell of radius 1.0 m. (b) A plot of
“ E(r) for the same shell.
12
8
=
R
T s

7(m)

)

24.12 Spark Discharge from a Charge Conductor:

Fig. 24-19 A large spark
jumps to a car’s body and then
exits by moving across the
insulating left front tire (note
the flash there), leaving the per-
son inside unharmed. (Courtesy
Westinghouse Electric
Corporation)

On nonspherical conductors, a surface charge does not distribute itself uniformly over the surface of
the conductor. At sharp points or edges, the surface charge density—and thus the external electric field,
—may reach very high values. The air around such sharp points or edges may become ionized,
producing the corona discharge that golfers and mountaineers see on the tips of bushes, golf clubs, and
rock hammers when thunderstorms threaten. Such corona disct
lightning strikes. In such circumstances, it is wise to enclose yourself in a cavity inside a conducting
shell, where the electric field is guaranteed to be zero. A car (unless it is a convertible or made with a

plastic body) is almost ideal

are often the p of

24.12 Isolated Conductor in an Isolated Electric Field:

If an isolated conductor is placed in an external
electric field, all points of the conductor still come to
a single potential regardless of whether the conductor
has an excess charge.

The free conduction electrons distribute themselves
on the surface in such a way that the electric field they
produce at interior points cancels the external electric
field that would otherwise be there.

Furthermore, the electron distribution causes the net
electric field at all points on the surface to be
perpendicular to the surface. If the conductor in Fig.
24-20 could be somehow removed, leaving the surface
charges frozen in place, the internal and external
electric field would remain absolutely unchanged.

Fig. 24-20 An uncharged conduc-
tor is suspended in an external elec-
tric field. The free electrons in the
conductor distribute themselves on
the surface as shown,so as to reduce
the net electric field inside the con-
ductor to zero and make the net field
at the surface perpendicular to the
surface.




