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Fundamentals Physics

Eleventh Edition

Halliday

Chapter 30

Induction and Inductance

30-1 Faraday’s Law and Lenz’s Law (1 of 14)

Learning Objectives

30.01 Identify that the amount of magnetic field piercing a surface
(not skimming along the surface) is the magnetic flux B
through the surface.

30.02 Identify that an area vector for a flat surface is a vector that is 
perpendicular to the surface and that has a magnitude equal 
to the area of the surface.

30.03 Identify that any surface can be divided into area elements 
(patch elements) that are each small enough and flat enough
for an area vector d A


to be assigned to it, with the vector

perpendicular to the element and having a magnitude equal 
to the area of the element.
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30-1 Faraday’s Law and Lenz’s Law (2 of 14)

30.04 Calculate the magnetic flux B through a surface by
integrating the dot product of the magnetic field vector B



and the area vector d A


(for patch elements) over the surface,
in magnitude-angle notation and unit-vector notation.

30.05 Identify that a current is induced in a conducting loop while 
the number of magnetic field lines intercepted by the loop is 
changing.

30.06 Identify that an induced current in a conducting loop is 
driven by an induced emf.

30.07 Apply Faraday’s law, which is the relationship between an 
induced emf in a conducting loop and the rate at which 
magnetic flux through the loop changes.
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30-1 Faraday’s Law and Lenz’s Law (3 of 14)

30.08 Extend Faraday’s law from a loop to a coil with multiple 
loops.

30.09 Identify the three general ways in which the magnetic flux 
through a coil can change.

30.10 Use a right-hand rule for Lenz’s law to determine the direction 
of induced emf and induced current in a conducting loop.

30.11 Identify that when a magnetic flux through a loop changes, the 
induced current in the loop sets up a magnetic field to oppose 
that change.

30.12 If an emf is induced in a conducting loop containing a battery, 
determine the net emf and calculate the corresponding current 
in the loop.

4Copyright ©2018 John Wiley & Sons, Inc



7/26/2022

2

30-1 Faraday’s Law and Lenz’s Law (4 of 14)

First Experiment. Figure shows a 
conducting loop connected to a 
sensitive ammeter. Because there is no 
battery or other source of emf included, 
there is no current in the circuit. 
However, if we move a bar magnet 
toward the loop, a current suddenly 
appears in the circuit. The current 
disappears when the magnet stops 
moving. If we then move the magnet 
away, a current again suddenly appears, 
but now in the opposite direction. If we 
experimented for a while, we would 
discover the following:
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30-1 Faraday’s Law and Lenz’s Law (5 of 14)

1. A current appears only if there is relative motion between 
the loop and the magnet (one must move relative to the 
other); the current disappears when the relative motion 
between them ceases.

2. Faster motion of the magnet produces a greater current.

3. If moving the magnet’s north pole toward the loop causes, 
say, clockwise current, then moving the north pole away 
causes counterclockwise current. Moving the south pole 
toward or away from the loop also causes currents, but in 
the reversed directions from the north pole effects.
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30-1 Faraday’s Law and Lenz’s Law (6 of 14)

Second Experiment. For this 
experiment we use the apparatus shown 
in the figure, with the two conducting 
loops close to each other but not 
touching. If we close switch S to turn 
on a current in the right-hand loop, the 
meter suddenly and briefly registers a 
current—an induced current—in the 
left-hand loop. If the switch remains 
closed, no further current is observed. 
If we then open the switch, another 
sudden and brief induced current 
appears in the left-hand loop, but in the 
opposite direction. 
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30-1 Faraday’s Law and Lenz’s Law (7 of 14)

We get an induced current (from an induced emf) only when 
the current in the right-hand loop is changing (either turning 
on or turning off) and not when it is constant (even if it is 
large). The induced emf and induced current in these 
experiments are apparently caused when something changes 
— but what is that “something”? Faraday knew.
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30-1 Faraday’s Law and Lenz’s Law (8 of 14)

Faraday’s Law of Induction

Faraday realized that an emf 
and a current can be induced in 
a loop, as in our two 
experiments, by changing the 
amount of magnetic field 
passing through the loop. He 
further realized that the 
“amount of magnetic field” can 
be visualized in terms of the 
magnetic field lines passing 
through the loop.

9Copyright ©2018 John Wiley & Sons, Inc

30-1 Faraday’s Law and Lenz’s Law (9 of 14)

The magnetic flux B through an area A in a magnetic field B


is defined as

B B d A  
 

where the integral is taken over the area. The SI unit of
magnetic flux is the weber, where 21 Wb 1 T m . 

If B is perpendicular to the area and uniform over it, the flux is

 area ,  uniform .B BA B A B  
 
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30-1 Faraday’s Law and Lenz’s Law (10 of 14)

Faraday’s Law of Induction

The magnitude of the emf E induced in a conducting loop is
equal to the rate at which the magnetic flux B through that
loop changes with time.
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30-1 Faraday’s Law and Lenz’s Law (11 of 14)

Faraday’s Law. With the notion of magnetic flux, we can 
state Faraday’s law in a more quantitative and useful way:

Bd

dt


 E

the induced emf tends to oppose the flux change and the minus 
sign indicates this opposition. This minus sign is referred to as 
Lenz’s Law.
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30-1 Faraday’s Law and Lenz’s Law (12 of 14)

Lenz’s Law

An induced current has a direction such that the magnetic field due 
to this induced current opposes the change in the magnetic flux that 
induces the current. The induced emf has the same direction as the 
induced current.

Lenz’s law at work. As the magnet is moved 
toward the loop, a current is induced in the 
loop. The current produces its own magnetic
field, with magnetic dipole moment 



oriented so as to oppose the motion of the 
magnet. Thus, the induced current must be 
counterclockwise as shown.
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30-1 Faraday’s Law and Lenz’s Law (13 of 14)

Lenz’s Law
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30-1 Faraday’s Law and Lenz’s Law (14 of 14)

The direction of the current i induced in a loop is such that the
current’s magnetic field indB


opposes the change in the

magnetic field B


inducing i. The field indB is always directed
opposite an increasing field  ,B a c


and in the same direction

as a decreasing field  , .B b d


The curled – straight right-hand
rule gives the direction of the induced current based on the 
direction of the induced field.
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30-2 Induction and Energy Transfer (1 of 9)

Learning Objectives

30.13 For a conducting loop pulled into or out of a 
magnetic field, calculate the rate at which energy is 
transferred to thermal energy.

30.14 Apply the relationship between an induced current 
and the rate at which it produces thermal energy.

30.15 Describe eddy currents.
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30-2 Induction and Energy Transfer (2 of 9)

In the figure, a rectangular loop of wire 
of width L has one end in a uniform 
external magnetic field that is directed 
perpendicularly into the plane of the 
loop. This field may be produced, for 
example, by a large electromagnet. The 
dashed lines in the figure show the 
assumed limits of the magnetic field; the 
fringing of the field at its edges is 
neglected. You are to pull this loop to
the right at a constant velocity .v


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30-2 Induction and Energy Transfer (3 of 9)

Flux change: Therefore, in the figure a magnetic field and a 
conducting loop are in relative motion at speed v and the flux of the 
field through the loop is changing with time (here the flux is 
changing as the area of the loop still in the magnetic field is 
changing).

Rate of Work: To pull the loop at a constant velocity ,v


you must
apply a constant force F


to the loop because a magnetic force of

equal magnitude but opposite direction acts on the loop to oppose 
you. The rate at which you do work — that is, the power — is then

,P Fv

where F is the magnitude of the force you apply to the loop.
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30-2 Induction and Energy Transfer (4 of 9)

Induced emf: To find the current, we 
first apply Faraday’s law. When x is the 
length of the loop still in the magnetic 
field, the area of the loop still in the field 
is Lx. Then, the magnitude of the flux 
through the loop is

.B BA BLx  
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30-2 Induction and Energy Transfer (5 of 9)

As x decreases, the flux decreases. 
Faraday’s law tells us that with this 
flux i decrease, an emf is induced in 
the loop. We can write the magnitude 
of this emf as

,Bd d dx
BLx BL BLv

dt dt dt


   E

in which we have replaced dx

dt

with v, the speed at which the 
loop moves.

A circuit diagram for the 
loop of above figure while 
the loop is moving.
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30-2 Induction and Energy Transfer (6 of 9)

Induced Current: Figure (bottom) shows the loop as a circuit: 
induced emf is represented on the left, and the collective resistance 
R of the loop is represented on the right. To find the magnitude of
the induced current, we can apply the equation Ri  E which gives

.
BLv

i
R


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30-2 Induction and Energy Transfer (7 of 9)

In the Fig. (top), the deflecting forces 
acting on the three segments of the
loop are marked 1 2 3, , and .F F F

  

Note, however, that from the
symmetry, forces 2 3and F F

 
are equal

in magnitude and cancel. This leaves
only force 1,F


which is directed

opposite your force F


on the loop and
thus is the force opposing you.

A circuit diagram for the 
loop of above figure 
while the loop is 
moving.
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30-2 Induction and Energy Transfer (8 of 9)

So, 1,F F 
 

the magnitude of 1F


thus

 1 sin 90 . from .dF F iLB iLB F iL B    
  

°

where the angle between B and the 
length vector L for the left segment is 
90°. This gives us

2 2

.
B L v

F
R


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30-2 Induction and Energy Transfer (9 of 9)

Because B, L, and R are constants, the 
speed v at which you move the loop is 
constant if the magnitude F of the force 
you apply to the loop is also constant.

Rate of Work: We find the rate at which 
you do work on the loop as you pull it 
from the magnetic field:

2 2 2B L v
P Fv

R
 

NOTE: The work that you do in pulling the 
loop through the magnetic field appears as 
thermal energy in the loop.

A circuit diagram for 
the loop of above 
figure while the loop 
is moving.
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30-3 Induced Electric Field (1 of 5)

Learning Objectives

30.16 Identify that a changing magnetic field induces an 
electric field, regardless of whether there is a 
conducting loop.

30.17 Apply Faraday’s law to relate the electric field E


induced along a closed path (whether it has conducting
material or not) to the rate of change d

dt
 of the

magnetic flux encircled by the path.

30.18  Identify that an electric potential cannot be associated 
with an induced electric field.
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30-3 Induced Electric Field (2 of 5)

(a) If the magnetic field increases at a steady 
rate, a constant induced current appears, as 
shown, in the copper ring of radius r. (b) An 
induced electric field exists even when the 
ring is removed; the electric field is shown 
at four points. (c) The complete picture of 
the induced electric field, displayed as field 
lines. (d) Four similar closed paths that 
enclose identical areas. Equal emfs are 
induced around paths 1 and 2, which lie 
entirely within the region of changing 
magnetic field. A smaller emf is induced 
around path 3, which only partially lies in 
that region. No net emf is induced around 
path 4, which lies entirely outside the 
magnetic field.
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30-3 Induced Electric Field (3 of 5)

Therefore, an emf is induced by a changing magnetic flux 
even if the loop through which the flux is changing is not a 
physical conductor but an imaginary line. The changing 
magnetic fieldinduces an electric field E


at every point of such a loop; the

induced emf is related to E


by

.E d s 
 

E
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30-3 Induced Electric Field (4 of 5)

Using the induced electric 
field, we can write Faraday’s 
law in its most general form as

Bd
E d s

dt


  

 


A changing magnetic field 
produces an electric field.
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30-3 Induced Electric Field (5 of 5)

Electric Potential: Induced electric fields are produced not by 
static charges but by a changing magnetic flux. Therefore,

Electric potential has meaning only for electric fields that are 
produced by static charges; it has no meaning for electric 
fields that are produced by induction.

29Copyright ©2018 John Wiley & Sons, Inc

30-4 Inductors and Inductance (1 of 3)

Learning Objectives

30.19 Identify an inductor.

30.20 For an inductor, apply the relationship between
inductance L, total flux ,N and current i.

30.21 For a solenoid, apply the relationship between the 
inductance per unit length L/l, the area A of each turn, 
and the number of turns per unit length n.
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30-4 Inductors and Inductance (2 of 3)

An inductor is a device that can be used to produce a known 
magnetic field in a specified region. If a current i is established
through each of the N windings of an inductor, a magnetic flux

B
links those windings. The inductance L of the inductor is

BN
L

i




The SI unit of inductance is the henry (H), where 21 henry 1H 1 T m / A.  

The inductance per unit length near the middle of a long solenoid of 
cross-sectional area A and n turns per unit length is

2
0

L
n A

l

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30-4 Inductors and Inductance (3 of 3)

The crude inductors with which Michael Faraday discovered the 
law of induction. In those days amenities such as insulated wire 
were not commercially available. It is said that Faraday insulated 
his wires by wrapping them with strips cut from one of his wife’s 
petticoats.
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30-5 Self-Induction (1 of 3)

Learning Objectives

30.22 Identify that an induced emf appears in a coil when the 
current through the coil is changing.

30.23 Apply the relationship between the induced emf in a
coil, the coil’s inductance L, and the rate di

dt
at which

the current is changing.

30.24 When an emf is induced in a coil because the current in 
the coil is changing, determine the direction of the emf 
by using Lenz’s law to show that the emf always 
opposes the change in the current, attempting to 
maintain the initial current.
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30-5 Self-Induction (2 of 3)

If two coils — which we can now call 
inductors — are near each other, a current
i in one coil produces a magnetic flux

B
through the second coil. We have seen 
that if we change this flux by changing 
the current, an induced emf appears in the 
second coil according to Faraday’s law. 
An induced emf appears in the first coil as 
well. This process (see Figure) is called 
self-induction, and the emf that appears is 
called a self-induced emf. It obeys 
Faraday’s law of induction just as other 
induced emfs do. For any inductor,

.BN Li 
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30-5 Self-Induction (3 of 3)

Faraday’s law tells us that

 
.B

L

d N

dt


 E

By combining these equations, we can write

 self-induced emf .L

di
L

dt
 E

An induced emf
LE appears in any coil in which the current is

changing.

Note: Thus, in any inductor (such as a coil, a solenoid, or a toroid) a 
self-induced emf appears whenever the current changes with time. 
The magnitude of the current has no influence on the magnitude of 
the induced emf; only the rate of change of the current counts.
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30-6 RL Circuits (1 of 6)

Learning Objectives

30.25  Sketch a schematic diagram of an RL circuit in which 
the current is rising.

30.26  Write a loop equation (a differential equation) for an RL 
circuit in which the current is rising.

30.27  For an RL circuit in which the current is rising, apply 
the equation i(t) for the current as a function of time.

30.28 For an RL circuit in which the current is rising, find 
equations for the potential difference V across the
resistor, the rate di

dt at which the current changes, and
the emf of the inductor, as functions of time.
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30-6 RL Circuits (2 of 6)

30.29 Calculate an inductive time constant .L
30.30 Sketch a schematic diagram of an RL circuit in which 

the current is decaying.

30.31  Write a loop equation (a differential equation) for an RL
circuit in which the current is decaying.

30.32  For an RL circuit in which the current is decaying, 
apply the equation i(t) for the current as a function of 
time.

37Copyright ©2018 John Wiley & Sons, Inc

30-6 RL Circuits (3 of 6)

30.33 From an equation for decaying current in an RL circuit, 
find equations for the potential difference V across the
resistor, the rate di

dt
at which current is changing, and

the emf of the inductor, as functions of time.

30.34 For an RL circuit, identify the current through the 
inductor and the emf across it just as current in the 
circuit begins to change (the initial condition) and a 
long time later when equilibrium is reached (the final 
condition).

38Copyright ©2018 John Wiley & Sons, Inc

30-6 RL Circuits (4 of 6)

If a constant emf E is introduced into a single-loop circuit
containing a resistance R and an inductance L, the current rises to an

equilibrium value of
R

E according to

1 L

t

i e
R


 

   
 

E

Here ,L the inductive time constant, is given by

L

L

R
 
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30-6 RL Circuits (5 of 6)

Plot (a) and (b) shows how the potential 
differences VR (= iR) across the resistor and

L

di
V L

dt
  
 

across the inductor vary with

time for particular values of , , and .L RE

When the source of constant emf is 
removed and replaced by a conductor, the 
current decays from a value i0 according 
to

0
L L

t t

i e i e
R

 
 

 
E

An RL circuit.
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30-6 RL Circuits (6 of 6)

The variation with time of (a) VR, the potential difference across the 
resistor in the circuit (top), and (b) VL, the potential difference 
across the inductor in that circuit. 

41Copyright ©2018 John Wiley & Sons, Inc

30-7 Energy Stored in a Magnetic 
Field (1 of 7)

Learning Objectives

30.35 Describe the derivation of the equation for the 
magnetic field energy of an inductor in an RL
circuit with a constant emf source.

30.36 For an inductor in an RL circuit, apply the 
relationship between the magnetic field energy U, 
the inductance L, and the current i.

42Copyright ©2018 John Wiley & Sons, Inc

30-7 Energy Stored in a Magnetic 
Field (2 of 7)

If an inductor L carries a current i, the inductor’s magnetic 
field stores an energy given by

21

2BU Li

An RL circuit.
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30-7 Energy Stored in a Magnetic 
Field (3 of 7)

A coil has an inductance of 53 mH and a resistance of 0.35 .

(a) If a 12 V emf is applied across the coil, how much energy 
is stored in the magnetic field after the current has built up to 
its equilibrium value?

Key Idea

The energy stored in the magnetic field of a coil at any time 
depends on the current through the coil at that time, according

to Eq. 30-49 21
.

2BU Li  
 
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30-7 Energy Stored in a Magnetic 
Field (4 of 7)

Calculations: Thus, to find the energy
BU 

stored at equilibrium, we
must first find the equilibrium current. From Equation 30-41, the 
equilibrium current is

12 V
34.3 A.

0.35
i

R   


E Equation (30-51)

Then substitution yields

  22 31 1
53 10  H 34.3A

2 2

31 J.

BU Li 
 

    
 

 (Answer)

45Copyright ©2018 John Wiley & Sons, Inc

30-7 Energy Stored in a Magnetic 
Field (5 of 7)

(b) After how many time constants will half this equilibrium energy 
be stored in the magnetic field? 

Calculations: Now we are being asked: At what time t will the 
relation

1

2B BU U 

be satisfied? Using Equation 30-49 twice allows us to rewrite this 
energy condition as

2 21 1 1

2 2 2
Li Li

   
 

or 1
.

2
i i

   
 

Equation (30-52)

46Copyright ©2018 John Wiley & Sons, Inc

30-7 Energy Stored in a Magnetic 
Field (6 of 7)

This equation tells us that, as the current increases from its initial
value of 0 to its final value of ,i the magnetic field will have half its
final stored energy when the current has increased to this value. In
general, we know that i is given by Equation 30-41, and here i
(see Equation 30-51) is ;

R

E so Equation 30-52 becomes

1 .
2

L

t

e
R R


 

   
 

E E

By canceling
R

E and rearranging, we can write this as

1
1 0.293,

2
L

t

e


  

47Copyright ©2018 John Wiley & Sons, Inc

30-7 Energy Stored in a Magnetic 
Field (7 of 7)

which yields

ln 0.293 1.23
L

t


  

or 1.2 .Lt  (Answer)

Thus, the energy stored in the magnetic field of the coil by the 
current will reach half its equilibrium value 1.2 time constants after 
the emf is applied.
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30-8 Energy Density of a Magnetic 
Field (1 of 3)

Learning Objectives

30.37 Identify that energy is associated with any 
magnetic field.

30.38 Apply the relationship between energy density uB
of a magnetic field and the magnetic field 
magnitude B.

49Copyright ©2018 John Wiley & Sons, Inc

30-8 Energy Density of a Magnetic 
Field (2 of 3)

Consider a length l near the middle of a long solenoid of cross-
sectional area A carrying current i; the volume associated with this 
length is Al. The energy UB stored by the length l of the solenoid 
must lie entirely within this volume because the magnetic field 
outside such a solenoid is approximately zero. Moreover, the stored 
energy must be uniformly distributed within the solenoid because 
the magnetic field is (approximately) uniform everywhere inside. 
Thus, the energy stored per unit volume of the field is

B
B

U
u

Al
 21

2BU Li

50Copyright ©2018 John Wiley & Sons, Inc

30-8 Energy Density of a Magnetic 
Field (3 of 3)

We have,

2 2

.
2 2B

Li L i
u

Al l A
 

here L is the inductance of length l of the solenoid

Substituting for L

l
we get

2 2
0

1

2Bu n i

And we can write the energy density as
2

02B

B
u



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30-9 Mutual Induction (1 of 3)

Learning Objectives

30.39 Describe the mutual induction of two coils and 
sketch the arrangement.

30.40 Calculate the mutual inductance of one coil with 
respect to a second coil (or some second current 
that is changing).

30.41 Calculate the emf induced in one coil by a second 
coil in terms of the mutual inductance and the rate 
of change of the current in the second coil.
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30-9 Mutual Induction (2 of 3)

Mutual induction. (a) The 
magnetic field B1 produced by 
current i1 in coil 1 extends 
through coil 2. If i1 is varied (by 
varying resistance R), an emf is 
induced in coil 2 and current 
registers on the meter 
connected to coil 2. (b) The 
roles of the coils interchanged.

53Copyright ©2018 John Wiley & Sons, Inc

30-9 Mutual Induction (3 of 3)

If coils 1 and 2 are near each other, a changing current in either coil 
can induce an emf in the other. This mutual induction is described 
by

1
2

di
M

dt
 E

and

2
1 .

di
M

dt
 E
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Summary (1 of 7)

Magnetic Flux

• The magnetic flux through an area A in a magnetic field B


is defined as

B B d A  
 

Equation 30-1

• If B


is perpendicular to the area and uniform over it, Equation 
30-1 becomes

 ,  uniform .B BA B A B  
 

Equation 30-2
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Summary (2 of 7)

Faraday’s Law of Induction

• The induced emf is,

Bd

dt


 E Equation 30-4

• If the loop is replaced by a closely packed coil of N turns, the 
induced emf is

.Bd
N

dt


 E Equation 30-5

56Copyright ©2018 John Wiley & Sons, Inc



7/26/2022

15

Summary (3 of 7)

Lenz’s Law

• An induced current has a direction such that the magnetic field 
due to this induced current opposes the change in the magnetic 
flux that induces the current.

emf and the Induced Magnetic Field

• The induced emf is related 
to

E


by

,E d s 
 

E Equation 30-19

• Faraday’s law in its most general form,

Bd
E d s

dt


  

 
 Equation 30-20
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Summary (4 of 7)

Inductor

• The inductance L of the inductor is

BN
L

i


 Equation 30-28

• The inductance per unit length near the middle of a long solenoid 
of cross-sectional area A and n turns per unit length is

2
0

L
n A

l
 Equation 30-31
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Summary (5 of 7)

Self-Induction

• This self-induced emf is,

.L

di
L

dt
 E Equation 30-35

Series RL Circuit

• Rise of current,

1 L

t

i e
R


 

  
 

E Equation 30-41

• Decay of current

0
L

t

i i e


 Equation 30-45
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Summary (6 of 7)

Magnetic Energy

• the inductor’s magnetic field stores an energy given by

21

2BU Li Equation 30-49

• The density of stored magnetic energy,

2

02B

B
u


 Equation 30-55
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Summary (7 of 7)

Mutual Induction

• The mutual induction is described by,

1
2

di
M

dt
 E Equation 30-64

2
1

di
M

dt
 E Equation 30-65
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