Chapter 31

Electromagnetic Oscillations and Alternating Current

31.2: LC Oscillations, Qualitatively:

In RC and RL circuits the charge, current, and potential difference grow and decay exponentially.

On the contrary, in an LC circuit, the charge, current, and potential difference vary sinusoidally with period T and angular frequency ω .

The resulting oscillations of the capacitor's electric field and the inductor's magnetic field are said to be **electromagnetic oscillations.**

٦

31.5: Damped Oscillations in an RLC Circuit:

Example, LC oscillator, potential charge, rate of current change

and then substitute $\mathcal{C}_m = 36.0 \text{ V}$ and $\omega_d = 2\pi f_d = 2\pi (60 \text{ Hz}) = 120\pi$ Substituting this and $\omega_d = 2\pi f_d = 120\pi$ into Eq. 31-35, to obtain $v_R = (36.0 \text{ V}) \sin(120\pi t)$. (Answer) $i_R = (0.180 \text{ A}) \sin(120\pi t)$. (Answer)
--

Example, Purely inductive load:			
potential difference and current			
	Fig. 31-12 An inductor is connected across an alternating-current generator.		
In Fig. 31-12, inductance L is 230 mH and the sinusoidal	KEY IDEA		
alternating emf device operates at amplitude $\mathcal{E}_m = 36.0 \text{ V}$ and frequency $f_d = 60.0 \text{ Hz}$.	In an ac circuit with a purely inductive load, the alternating		
(a) What are the potential difference $v_L(t)$ across the inductance and the amplitude V_L of $v_L(t)$?	current $i_L(t)$ in the inductance lags the alternating potential dif- ference $v_L(t)$ by 90°. (In the mnemonic of the problem-solving tactic, this circuit is "positively an <i>ELI</i> circuit," which tells us that the emf <i>E</i> leads the current <i>I</i> and that <i>do is positive</i> .)		
KEY IDEA	Colouisticanos Deserves the observestate to fee the		
In a circuit with a purely inductive load, the potential dif-	Calculations: Because the phase constant ϕ for the current is +90°, or + $\pi/2$ rad, we can write Eq. 31-29 as		
ference $v_L(t)$ across the inductance is always equal to the potential difference $\mathscr{C}(t)$ across the emf device.	$i_L = I_L \sin(\omega_d t - \phi) = I_L \sin(\omega_d t - \pi/2).$ (31-54)		
Calculations: Here we have $v_L(t) = \mathfrak{E}(t)$ and $V_L = \mathfrak{E}_m$. Since \mathfrak{E}_m is given, we know that	We can find the amplitude I_L from Eq. 31-52 ($V_L = I_L X_L$) if we first find the inductive reactance X_L . From Eq. 31-49 ($X_L = \omega_d L$), with $\omega_d = 2\pi f_d$, we can write		
$V_L = \mathscr{C}_m = 36.0 \text{ V.}$ (Answer)	$X_I = 2\pi f_d L = (2\pi)(60.0 \text{ Hz})(230 \times 10^{-3} \text{ H})$		
To find $v_L(t)$, we use Eq. 31-28 to write	$= 86.7 \Omega.$		
$v_L(t) = \mathcal{C}(t) = \mathcal{C}_m \sin \omega_d t. \tag{31-53}$	Then Eq. 31-52 tells us that the current amplitude is		
Then, substituting $\mathscr{C}_m = 36.0 \text{ V}$ and $\omega_d = 2\pi f_d = 120\pi$ into Eq. 31-53, we have	$I_L = \frac{V_L}{X_L} = \frac{36.0 \text{ V}}{86.7 \Omega} = 0.415 \text{ A.}$ (Answer)		
$v_L = (36.0 \text{ V}) \sin(120\pi t).$ (Answer)	Substituting this and $\omega_d = 2\pi f_d = 120\pi$ into Eq. 31-54, we		
(b) What are the current $i_L(t)$ in the circuit as a function of	have		
time and the amplitude I_I of $i_I(t)$?	$t_L = (0.415 \text{ A}) \sin(120\pi t - \pi/2).$ (Answer		

			Table 31-2		
Phase and Ar	nplitude Relatio	ons for Alternating Cu	rrents and Voltages		
Circuit Element	Symbol	Resistance or Reactance	Phase of the Current	Phase Constant (or Angle) ϕ	Amplitud Relation
Resistor	R	R	In phase with v_R	$0^{\circ} (= 0 \text{ rad})$	$V_R = I_R R$
Capacitor	С	$X_C = 1/\omega_d C$	Leads v_C by 90° (= $\pi/2$ rad)	$-90^{\circ} (= -\pi/2 \text{ rad})$	$V_C = I_C X$
Industan	L	$X_L = \omega_d L$	Lags v_1 by 90° (= $\pi/2$ rad)	$+90^{\circ}$ (= $+\pi/2$ rad)	$V_L = I_L X$

ş

desirable for reasons of safety and for efficient equipment design to deal with relatively low The ideal transformer consists of two coils, with different Primary voltages at both the generating end (the electrical numbers of turns, wound around an iron core. Fig. 31-18 An ideal transformer (two power plant) and the receiving end (the home or coils wound on an iron core) in a basi transformer circuit. An ac generator pro-duces current in the coil at the left (the *pri mary*). The coil at the right (the *secondary*) is connected to the resistive load *R* when In use, the primary winding, of Np turns, is connected to an factory). alternating-current generator whose emf at any time t is given by $\mathscr{C} = \mathscr{C}_m \sin \omega t$. Nobody wants an electric toaster or a child's switch S is closed electric train to operate at, say, 10 kV. The secondary winding, of N_s turns, is connected to load resistance R, but its circuit is an open circuit as long as switch S is open. On the other hand, in the transmission of electrical energy from the generating plant to the consumer, The small sinusoidally changing primary current I_{mag} produces a sinusoidally changing we want the lowest practical current (hence the magnetic flux B in the iron core. largest practical voltage) to minimize I2R losses (often called ohmic losses) in the transmission line Because B varies, it induces an emf (dB/dt) in each turn of the secondary. This emf per turn is the same in the primary and the secondary. Across the primary, the voltage $V_p = \mathcal{E}_{tum} N_p$ Similarly, across the secondary the voltage is $V_s = \boldsymbol{\mathcal{E}}_{turn} N_s$. $V_s = V_p \frac{N_s}{N_p}$ (transformation of voltage)

31.11: Transformers:

constant, is called the **transformer**.

 \Rightarrow

A device with which we can raise and lower the ac voltage in a circuit, keeping the product current voltage essentially

31.11: Transformers:

In electrical power distribution systems it is

Example, Transformer:

(a) What is the turns ratio N_p/N_s of the transformer?

KEY IDEA

The turns ratio N_p/N_s is related to the (given) rms primary and secondary voltages via Eq. 31-79 ($V_s = V_p N_s/N_p$). calculation: We can write Eq. 31-79 as

$$\frac{V_s}{V} = \frac{N_s}{N}.$$

 $\frac{N_p}{N_s} = \frac{V_p}{V_s} = \frac{8.5 \times 10^3 \,\mathrm{V}}{120 \,\mathrm{V}} = 70.83 \approx 71.$

(b) The average rate of energy consumption (or dissipa-tion) in the houses served by the transformer is 78 kW. What re the rms currents in the primary and secondary of the ransformer?

