Name: \qquad

Quiz \#2: Electric Fields

Problem 1 (2 points)
A $200-\mathrm{N} / \mathrm{C}$ electric field is in the positive x direction. The force on an electron in this field is:
a) 200 N in the positive x direction
b) 200 N in the negative x direction
c) $3.2 \times 10^{-17} \mathrm{~N}$, in the positive x direction
d) $3.2 \times 10^{-17} \mathrm{~N}$, in the negative x direction
e) 0

Problem 2 (3 points)
A positive charge +Q is distributed uniformly along the positive x -axis while a negative charge -Q is distributed uniformly along the negative x -axis as shown in the figure below.

The magnitude of the electric field a distance y above the perpendicular bisector of the rod is given by

$\overrightarrow{\mathrm{E}}=\frac{\lambda}{2 \pi \varepsilon_{0}}\left(\frac{1}{\mathrm{y}}-\frac{1}{\left(\mathrm{y}^{2}+\mathrm{L}^{2}\right)^{1 / 2}}\right)$
Simplify the above expression for the electric field in the limit that y is much larger than $\mathrm{L}(\mathrm{y} \gg \mathrm{L})$.

Problem 3 (5 points)
The figure below shows two charged particles on an x-axis: $q_{1}=-3.20 \mu \mathrm{C}$ at $\mathrm{x}=-3.00 \mathrm{~cm}$ and $\mathrm{q}_{2}=3.20 \mu \mathrm{C}$ at $\mathrm{x}=+3.00 \mathrm{~cm}$. What are the magnitude and direction (relative to the $+\mathrm{x}-\mathrm{axis}$) of the net electric field produced at point P at $\mathrm{y}=4.00 \mathrm{~cm}$?

