\qquad

Quiz \#3: Gauss' Law

Problem 1 (2 points)

The figure shows sections of three infinite nonconducting sheets with uniform surface charge densities of either $+\sigma$ or -2σ as indicated. In which region (A, B, C, or D) is the magnitude of the electric field the greatest? What is that magnitude?

a) region $\mathbf{B}: E=\sigma / \varepsilon_{0}$
b) region $\mathbf{B}: E=2 \sigma / \varepsilon_{0}$
c) region C: $\mathrm{E}=2 \sigma / \varepsilon_{0}$
d) region $\mathrm{C}: \mathrm{E}=4 \sigma / \varepsilon_{0}$
e) none of the above

Problem 2 (3 points)
A particle of charge $\mathrm{q}=-25 \mu \mathrm{C}$ is at the center of two concentric conducting spherical shells as shown in the figure below. Shell A has a net charge of $+10 \mu \mathrm{C}$ and shell B has a charge of $-35 \mu \mathrm{C}$. What is the charge on the inner and outer surfaces of each shell?

$$
\text { Inner surface } \quad \underline{\text { Outer surface }}
$$

Charge on shell A:

Charge on shell B:

Problem 3 (5 points)
A very long, solid conducting cylinder has a radius of 5.0 cm and charge density is $\lambda=1.80 \mathrm{nC} / \mathrm{m}$. Point A is 12.0 cm from the central axis of the cylinder and point B is 4.0 cm from the central axis of the cylinder. Use Gauss' law to find the electric field (magnitude and direction) at points A and B.

Note: You must show all work starting with the expression for Gauss' Law.

