Physics 4B Fall 2017
are. $=7.5$
Name: \qquad

$$
\sigma=2.0
$$

Quiz \#4: Electric Potential

Problem 1 (1 point)
A beam of electrons is deflected as it moves between oppositely charged parallel plates. Which plate is at the higher potential?
a) The upper plate.
(b) The lower plate.
c) They are at the same potential.

Problem 2 (1 point)
An electron moves from point i to point f, in the direction of a uniform electric field. During this placement:

farce on electron is to
the left so field does
negatris worn $+U$ deceocuse
increases
a) the work done by the field is positive and the potential energy of the electron-field system increases
b) the work done by the field is negative and the potential energy of the electron-field system increases
c) the work done by the field is positive and the potential energy of the electron-field system decreases
d) the work done by the field is negative and the potential energy of the electron-field system decreases
e) the work done by the field is positive and the potential energy of the electron-field system does not change

Problem 3 (3 points)

The figure below shows four pairs of charged particles. For each pair, let $V=0$ at infinity and consider $V_{\text {net }}$ at points on the x axis. For which pairs is there a point at which $\mathrm{V}_{\text {net }}=0$ (a) between the particles and (b) to the right of the particles? (c) Rank the pairs according to their electric potential energy (that is, the energy of the two-particle system), greatest (most positive) first.

(1)

(3)

(2)

(4)
a)

b)

$$
U=\frac{1}{4 \pi \varepsilon_{0}} \frac{q_{1}, q_{0}}{r}
$$

Problem 4 (5 points)
In the figure below, what is the net electric potential at the origin (assuming $\mathrm{V}=0$ at infinity) due to the circular arc of charge $+Q$ (whose center of curvature is at the origin) and the two particles of charges +4 Q and -2 Q ? Let $\mathrm{Q}=8.0 \mu \mathrm{C}$ and $\mathrm{R}=1.50 \mathrm{~m}$.
 for a point change: $V=\frac{1}{4 \pi \varepsilon_{0}} \frac{q}{r}$ for tho circular are:

$$
\begin{aligned}
& V=\frac{1}{4 \pi \varepsilon_{0}} \int \frac{d q}{r}=\frac{1}{4 \pi \varepsilon_{0} R} \int d q \\
& V=\frac{1}{4 \pi \varepsilon_{0}} \frac{q}{R}
\end{aligned}
$$

$$
\begin{aligned}
& V_{\text {met }}=\frac{1}{4 \pi \varepsilon_{0}} \frac{Q}{R}=\frac{\left(8.99 \times 10^{9} \mathrm{Nm}^{2} / \mathrm{c}^{2}\right)\left(8.0 \times 10^{-6} \mathrm{C}\right)}{1.50 \mathrm{~m}} \\
& V_{\text {net }}=4.8 \times 10^{4} \mathrm{~V}
\end{aligned}
$$

