$$
\begin{aligned}
\text { are }_{\theta} & =5.7 \\
\sigma & =2.6
\end{aligned}
$$

Name: \qquad
Lab (circle one): 8:00 am 11:15 am $\quad 2: 30 \mathrm{pm}$
Quiz \#4: Electric Potential
Problem 1 (2 points)
Two conducting spheres, one having twice the diameter of the other, are separated by a distance large compared to their diameters. The smaller sphere (1) has charge q and the larger sphere (2) is uncharged.

After the spheres are connected by a long thin conducting wire:
a) sphere 2 has twice the potential as sphere 1 .

* when two conductors
b) sphere 2 has half the potential as sphere 1 .
(c) sphere 2 has twice the charge as sphere 1.
d) spheres 1 and 2 have the same charge.
e) none of the above

$$
V_{1}=V_{2} \rightarrow \frac{1}{4 \pi \varepsilon_{0}} \frac{q_{1}}{R_{1}}=\frac{1}{4 \pi \varepsilon_{0}} \frac{q_{2}}{R_{2}} \rightarrow q_{2}=\left(\frac{R_{2}}{R_{1}}\right) q_{1}
$$

Problem 2 (3 points) trace, all point on bath conductress reacher the sam potential The figure shows a family of parallel equipotential surfaces (in cross section) and five paths along which we shall move an electron from one surface to another.

$$
\begin{aligned}
& 1 \rightarrow \Delta V=-10 \mathrm{~V} \\
& 2 \rightarrow \Delta V=-10 \mathrm{~V} \\
& 3 \rightarrow \Delta V=-20 \mathrm{~V} \\
& 4 \rightarrow \Delta V=10 \mathrm{~V} \\
& 5 \rightarrow \Delta V=-10 \mathrm{~V}
\end{aligned}
$$

a) For which of the paths is the change in potential energy of the electron positive?

$$
1,2,3,+5
$$

$\Delta U=q \Delta V \leadsto$ since $q<0$, we want $\triangle V<0$
b) For which of the five paths is the work done by the electric field the greatest.

$$
W=-\Delta V=-(-c) \Delta V=\operatorname{esV} \quad \operatorname{patar} 4
$$

c) For which of the five paths is the work done by the electric field the least.

$$
W=-\Delta U=-(-e) \Delta V=e \Delta V \quad \text { patti } 3 \text {. }
$$

Problem 3 (5 points)
(a) Derive an expression for the electric potential at point P, which is a distance z above the center of a uniformly charged ring of charge Q.

Express your answer in terms of z, R (the radius of the ring), and Q (the total charge on the ring).

Note: you must show all steps.

$$
\begin{aligned}
& V=\int d V=\int \frac{1}{4 \pi \varepsilon_{0}} \frac{d q}{r} \\
& V=\frac{1}{4 \pi \varepsilon_{0}} \int \frac{d q}{r} \quad r=\sqrt{z^{2}+R^{2}} \text { for all posits } \\
& \text { along the ing }
\end{aligned} \quad \begin{aligned}
& \frac{1}{4 \pi \varepsilon_{0}} \frac{1}{\sqrt{Z^{2}+R^{2}}} \int d q \quad \int d q=Q \\
& V=\frac{1}{4 \pi \varepsilon_{0}} \frac{Q}{\sqrt{Z^{2}+B^{2}}}
\end{aligned}
$$

(b) From the above result, derive an expression for the electric field magnitude E a distance z above the center of the ring.

Note: you must show all steps.
\Rightarrow we want \vec{E} for pants along tree z-apis: E_{z}

$$
\begin{aligned}
E_{z} & =-2 v / 2 z=-2 / 2 z\left[\frac{1}{4 \pi \varepsilon_{0}} \frac{Q}{\sqrt{z^{2}+R^{2}}}\right] \\
& =\frac{-Q}{4 \pi \varepsilon_{0}} \frac{\partial}{2 z}\left(z^{2}+R^{2}\right)^{-1 / 2} \\
& =\frac{-Q}{4 \pi \varepsilon_{0}}\left[-1 / 2\left(z^{2}+R^{2}\right)^{-3 / 2}(2 z)\right]=\frac{-Q}{4 \pi \varepsilon_{0}}\left[-z\left(z^{2}+R^{2}\right)^{-3 / 2}\right]
\end{aligned}
$$

$$
E_{z}=\frac{1}{4 \pi \varepsilon_{0}} \frac{Q z}{\left(z^{2}+B^{2}\right)^{3 / 2}}
$$

