Physics 4B
Fall 2017

$$
\begin{aligned}
\text { are. } & =7.6 \\
\sigma & =2.5
\end{aligned}
$$

Name: \qquad
Lab (circle one): 8:00 am 11:15 am $\quad 2: 45 \mathrm{pm}$

Quiz \#6: Circuits
Problem 1 (2 points)
The equivalent resistance between points a and b in the circuit shown to the right is:
a) 6.0Ω
b) 7.2Ω
c) 8.0Ω
d) 9.0Ω

e) none of the above

$$
9 \Omega
$$

from aught loop:
Problem 3 (2 points)
You have two identical 100Ω resistors and two identical ideal 5.0 V batteries. Draw a circuit diagram of how you would arrange the resistors and batteries in order to get the maximum possible total power out of the resistors.
 for a resistor, $P=i V=i^{2} R$ l to maximise P we want to masiming the current though each resistor
Problem 4 (3 points)
In the circuit to the right, $R=750 \Omega$ and the capacitor is initially uncharged. The switch is then closed, and after 0.015 s , the charge on the capacitor has increased to half of its final value. What is the capacitance of the capacitor?
for charging a capacitor:: $\quad q=q_{0}\left(1-e^{-t / \tau}\right) \quad \tau=R C$

$$
\begin{aligned}
& q=1 / 2 q_{0} \text { at } t=0.015 s \\
& 1 / 2 q_{0}=q_{0}\left(1-e^{-t / \tau}\right) \rightarrow 1 / 2=1-e^{-t / \tau} \rightarrow e^{-t / \tau}=1 / 2 \\
& -t / \tau=\ln (1 / 2) \rightarrow \tau=-t / \ln (1 / 2)=\frac{-0.015 \mathrm{~s}}{\ln (1 / 2)} \rightarrow \tau=0.0216 \mathrm{~s} \\
& \tau=R C \rightarrow C=\tau / R=\frac{0.0216 s}{750 \Omega}=28.9 \mu \mathrm{~F}
\end{aligned}
$$

