Celebration \#1: Chapters 21-25

Short Answer Questions (5 or 6 points each)

Question 1 (6 points)
A $+20 \mu C$ point charge is surrounded by 2 conducting spherical shells as shown in the figure to the right. The inner shell has a charge of $+15 \mu \mathrm{C}$ and has an inner radius R_{a} and outer radius R_{b}. The outer shell has a charge of $-10 \mu C$ and has an inner radius R_{c} and outer radius R_{d}

What is the charge on the inner surface of the inner shell (at radius R_{a})?

What is the charge on the outer surface of the inner shell (at radius R_{b})?

What is the charge on the inner surface of the outer shell (at radius R_{c})?

What is the charge on the outer surface of the outer shell (at radius R_{d})?

Question 2 (6 points)
The capacitor in the figure below has a capacitance of $25.0 \mu \mathrm{~F}$ and is initially uncharged. The battery provides a potential difference is 15.0 V . After the switch is closed, how many electrons will flow from the battery to the bottom plate of the capacitor?

Question 3 (5 points)
The electric potential at point P , a distance z from central axis of a thin ring of radius R and linear charge density λ, can be written as $V=\lambda R /\left(2 \varepsilon_{0} \sqrt{z^{2}+R^{2}}\right)$. Show that both sides of this equation have the same units.

Question 4 (5 points)

You are given the potential function $V(x, y)=6 x y^{3}+3 x^{2} y$, where V is in volts and x and y are in meters. Determine the magnitude of the electric field \mathbf{E} at the point $\mathrm{x}=1, \mathrm{y}=2$.

Question 5 (6 points)
Three point charges have equal magnitudes. They are fixed in place on the same straight line, and are equally separated by a distance d. Consider the net electrostatic force acting on each charge. Calculate the ratio of the largest to the smallest net force.

Problems (12 points each)

Problem 1

In the circuit shown below, what is the charge on and the potential difference across each capacitor?

Problem 2

In the figure below, point P is at the center of the rectangle, $\mathrm{q}_{1}=4.00 \mathrm{pC}, \mathrm{q}_{2}=2.50 \mathrm{pC}$, $\mathrm{q}_{3}=5.00 \mathrm{pC}$, and $\mathrm{d}=3.50 \mathrm{~cm}$. (a) What is the net electric potential at point P due to the six charged particles? (b) What is the magnitude and direction of the net electric field at point P due to the six charged particles?

Problem 3

A long, solid nonconducting cylinder of length L and radius R has a nonuniform charge distribution of volume charge density $\rho=\mathrm{Ar} / \mathrm{R}$, where r is the radial distance from the cylindrical axis and A is a constant. Using Gauss' law, derive an expression for the electric field a radial distance r from the axis of the cylinder for points (a) inside the cylinder $(r<R)$, and (b) outside the cylinder $(r>R)$.

Hint: $q=\int \rho d V=\int \rho(2 \pi r L) d r$

Problem 4
What is the magnitude and direction of the net electrostatic force on the -5.0 nC charge?

Problem 5

A dust particle with mass $5.0 \mu \mathrm{~g}$ and charge 2.0 nC starts from rest at point a and moves in a straight line to point b. What is its speed at point b ?

Problem 6

Charge $\mathrm{Q}=30.0 \mathrm{nC}$ is uniformly distributed along a thin, flexible rod of length $\mathrm{L}=15.0 \mathrm{~cm}$. The rod is bent into a semicircle as shown in the figure below. What is the magnitude and direction of the electric field at the center of the semicircle?

