Review Problems for Celebration 1

Problem 1

In the figure below, $\mathrm{V}=12 \mathrm{~V}, \mathrm{C}_{1}=\mathrm{C}_{5}=\mathrm{C}_{6}=6.0 \mu \mathrm{~F}$ and $\mathrm{C}_{2}=\mathrm{C}_{3}=\mathrm{C}_{4}=4.0 \mu \mathrm{~F}$. What are the charge stored on and the voltage across each capacitor?

Problem 2

The two charged spheres shown in the figure below each have mass $\mathrm{m}=1.0 \mathrm{~kg}$, radius $\mathrm{r}=12.5 \mathrm{~cm}$, and surface charge density $\sigma=15 \mathrm{nC} / \mathrm{m}^{2}$. What is the magnitude and direction of the force on a proton placed at the origin?

Problem 3

Charge is distributed uniformly throughout the volume of a very long solid nonconducting cylinder of radius R and uniform volume charge density ρ. Using Gauss’ law, derive an expression for the electric field a distance r from the axis of the cylinder for points (a) inside the cylinder, and (b) outside the cylinder. Express your answers in terms ρ, r, and R.
(Note: you must start with Gauss’s law and show all work to get credit)

Problem 4

Calculate the electric potential and the electric field at point $\mathrm{P}(4.0 \mathrm{~m}, 0 \mathrm{~m})$ due to a continuous line of uniform charge density $\lambda=2.5 \mu \mathrm{C} / \mathrm{m}$, extending from ($0 \mathrm{~m}, 3.0 \mathrm{~m}$) to ($0 \mathrm{~m},-3.0 \mathrm{~m}$) along the y-axis as shown below.

Problem 5

Charge is placed on two conducting spheres that are very far apart and connected by a long thin wire as shown in the figure below. The radius of the smaller sphere is 5.0 cm and the radius of the larger sphere is 12 cm . The electric field at the surface of the larger sphere is $200 \mathrm{kV} / \mathrm{m}$. Find the surface charge density σ on each sphere.

