Physics 4B

Solutions to Chapter 21 HW

Chapter 21: Questions: 4, 8, 10
Problems: 11, 13, 15, 22, 27, 39, 56, 63, 64

Question 21-4

(a) between; (b) positively charged; (c) unstable

Question 21-8

a and d tie, then b and c tie

Question 21-10

$6 \mathrm{kq}{ }^{2} / \mathrm{d}^{2}$, leftward

Problem 21-11

The force experienced by q_{3} is

$$
\vec{F}_{3}=\vec{F}_{31}+\vec{F}_{32}+\vec{F}_{34}=\frac{1}{4 \pi \varepsilon_{0}}\left(-\frac{\left|q_{3}\right|\left|q_{1}\right|}{a^{2}} \hat{\mathrm{j}}+\frac{\left|q_{3}\right|\left|q_{2}\right|}{(\sqrt{2} a)^{2}}\left(\cos 45^{\circ} \hat{\mathrm{i}}+\sin 45^{\circ} \hat{\mathrm{j}}\right)+\frac{\left|q_{3}\right|\left|q_{4}\right|}{a^{2}} \hat{\mathrm{i}}\right)
$$

(a) Therefore, the x-component of the resultant force on q_{3} is

$$
F_{3 x}=\frac{\left|q_{3}\right|}{4 \pi \varepsilon_{0} a^{2}}\left(\frac{\left|q_{2}\right|}{2 \sqrt{2}}+\left|q_{4}\right|\right)=\left(8.99 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}^{2}\right) \frac{2\left(1.0 \times 10^{-7} \mathrm{C}\right)^{2}}{(0.050 \mathrm{~m})^{2}}\left(\frac{1}{2 \sqrt{2}}+2\right)=0.17 \mathrm{~N} .
$$

(b) Similarly, the y-component of the net force on q_{3} is

$$
F_{3 y}=\frac{\left|q_{3}\right|}{4 \pi \varepsilon_{0} a^{2}}\left(-\left|q_{1}\right|+\frac{\left|q_{2}\right|}{2 \sqrt{2}}\right)=\left(8.99 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}^{2}\right) \frac{2\left(1.0 \times 10^{-7} \mathrm{C}\right)^{2}}{(0.050 \mathrm{~m})^{2}}\left(-1+\frac{1}{2 \sqrt{2}}\right)=-0.046 \mathrm{~N} .
$$

Problem 21-13

(a) There is no equilibrium position for q_{3} between the two fixed charges, because it is being pulled by one and pushed by the other (since q_{1} and q_{2} have different signs); in this region this means the two force arrows on q_{3} are in the same direction and cannot cancel.
It should also be clear that off-axis (with the axis defined as that which passes through the two fixed charges) there are no equilibrium positions. On the semi-infinite region of the axis that is nearest q_{2} and furthest from q_{1} an equilibrium position for q_{3} cannot be found because $\left|q_{1}\right|<\left|q_{2}\right|$ and the magnitude of force exerted by q_{2} is everywhere (in that region) stronger than that exerted by q_{1} on q_{3}. Thus, we must look in the semi-infinite region of the axis which is nearest q_{1} and furthest from q_{2}, where the net force on q_{3} has magnitude

$$
\left|k \frac{\left|q_{1} q_{3}\right|}{L_{0}^{2}}-k \frac{\left|q_{2} q_{3}\right|}{\left(L+L_{0}\right)^{2}}\right|
$$

with $L=10 \mathrm{~cm}$ and L_{0} is assumed to be positive. We set this equal to zero, as required by the problem, and cancel k and q_{3}. Thus, we obtain

$$
\frac{\left|q_{1}\right|}{L_{0}^{2}}-\frac{\left|q_{2}\right|}{\left(L+L_{0}\right)^{2}}=0 \Rightarrow\left(\frac{L+L_{0}}{L_{0}}\right)^{2}=\left|\frac{q_{2}}{q_{1}}\right|=\left|\frac{-3.0 \mu \mathrm{C}}{+1.0 \mu \mathrm{C}}\right|=3.0
$$

which yields (after taking the square root)

$$
\frac{L+L_{0}}{L_{0}}=\sqrt{3} \Rightarrow L_{0}=\frac{L}{\sqrt{3}-1}=\frac{10 \mathrm{~cm}}{\sqrt{3}-1} \approx 14 \mathrm{~cm}
$$

for the distance between q_{3} and q_{1}. That is, q_{3} should be placed at $x=-14 \mathrm{~cm}$ along the x-axis.
(b) As stated above, $y=0$.

Problem 21-15

(a) The distance between q_{1} and q_{2} is

$$
r_{12}=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}=\sqrt{(-0.020 \mathrm{~m}-0.035 \mathrm{~m})^{2}+(0.015 \mathrm{~m}-0.005 \mathrm{~m})^{2}}=0.056 \mathrm{~m} .
$$

The magnitude of the force exerted by q_{1} on q_{2} is

$$
F_{21}=k \frac{\left|q_{1} q_{2}\right|}{r_{12}^{2}}=\frac{\left(8.99 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}^{2}\right)\left(3.0 \times 10^{-6} \mathrm{C}\right)\left(4.0 \times 10^{-6} \mathrm{C}\right)}{(0.056 \mathrm{~m})^{2}}=35 \mathrm{~N} .
$$

(b) The vector \vec{F}_{21} is directed toward q_{1} and makes an angle θ with the $+x$ axis, where

$$
\theta=\tan ^{-1}\left(\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\right)=\tan ^{-1}\left(\frac{1.5 \mathrm{~cm}-0.5 \mathrm{~cm}}{-2.0 \mathrm{~cm}-3.5 \mathrm{~cm}}\right)=-10.3^{\circ} \approx-10^{\circ} .
$$

(c) Let the third charge be located at (x_{3}, y_{3}), a distance r from q_{2}. We note that q_{1}, q_{2}, and q_{3} must be collinear; otherwise, an equilibrium position for any one of them would be impossible to find. Furthermore, we cannot place q_{3} on the same side of q_{2} where we also find q_{1}, since in that region both forces (exerted on q_{2} by q_{3} and q_{1}) would be in the same direction (since q_{2} is attracted to both of them). Thus, in terms of the angle found in part (a), we have $x_{3}=x_{2}-r \cos \theta$ and $y_{3}=y_{2}-r \sin \theta$ (which means $y_{3}>y_{2}$ since θ is negative). The magnitude of force exerted on q_{2} by q_{3} is $F_{23}=k\left|q_{2} q_{3}\right| / r^{2}$, which must equal that of the force exerted on it by q_{1} (found in part (a)). Therefore,

$$
k \frac{\left|q_{2} q_{3}\right|}{r^{2}}=k \frac{\left|q_{1} q_{2}\right|}{r_{12}^{2}} \Rightarrow r=r_{12} \sqrt{\frac{q_{3}}{q_{1}}}=0.0645 \mathrm{~m}=6.45 \mathrm{~cm} .
$$

Consequently, $x_{3}=x_{2}-r \cos \theta=-2.0 \mathrm{~cm}-(6.45 \mathrm{~cm}) \cos \left(-10^{\circ}\right)=-8.4 \mathrm{~cm}$,
(d) and $y_{3}=y_{2}-r \sin \theta=1.5 \mathrm{~cm}-(6.45 \mathrm{~cm}) \sin \left(-10^{\circ}\right)=2.7 \mathrm{~cm}$.

Problem 21-22

(a) We note that $\cos \left(30^{\circ}\right)=\frac{1}{2} \sqrt{3}$, so that the dashed line distance in the figure is $r=2 d / \sqrt{3}$.

The net force on q_{1} due to the two charges q_{3} and q_{4} (with $\left|q_{3}\right|=\left|q_{4}\right|=1.60 \times 10^{-19} \mathrm{C}$) on the y axis has magnitude

$$
2 \frac{\left|q_{1} q_{3}\right|}{4 \pi \varepsilon_{0} r^{2}} \cos \left(30^{\circ}\right)=\frac{3 \sqrt{3}\left|q_{1} q_{3}\right|}{16 \pi \varepsilon_{0} d^{2}} .
$$

This must be set equal to the magnitude of the force exerted on q_{1} by $q_{2}=8.00 \times 10^{-19} \mathrm{C}=5.00$ $\left|q_{3}\right|$ in order that its net force be zero:

$$
\frac{3 \sqrt{3}\left|q_{1} q_{3}\right|}{16 \pi \varepsilon_{0} d^{2}}=\frac{\left|q_{1} q_{2}\right|}{4 \pi \varepsilon_{0}(D+d)^{2}} \Rightarrow D=d\left(2 \sqrt{\frac{5}{3 \sqrt{3}}}-1\right)=0.9245 d
$$

Given $d=2.00 \mathrm{~cm}$, this then leads to $D=1.92 \mathrm{~cm}$.
(b) As the angle decreases, its cosine increases, resulting in a larger contribution from the charges on the y axis. To offset this, the force exerted by q_{2} must be made stronger, so that it must be brought closer to q_{1} (keep in mind that Coulomb's law is inversely proportional to distance-squared). Thus, D must be decreased.

Problem 21-27

(a) The magnitude of the force between the (positive) ions is given by

$$
F=\frac{(q)(q)}{4 \pi \varepsilon_{0} r^{2}}=k \frac{q^{2}}{r^{2}}
$$

where q is the charge on either of them and r is the distance between them. We solve for the charge:

$$
q=r \sqrt{\frac{F}{k}}=\left(5.0 \times 10^{-10} \mathrm{~m}\right) \sqrt{\frac{3.7 \times 10^{-9} \mathrm{~N}}{8.99 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}^{2}}}=3.2 \times 10^{-19} \mathrm{C} .
$$

(b) Let n be the number of electrons missing from each ion. Then, $n e=q$, or

$$
n=\frac{q}{e}=\frac{3.2 \times 10^{-9} \mathrm{C}}{1.6 \times 10^{-19} \mathrm{C}}=2
$$

Problem 21-39

Using Coulomb's law, the magnitude of the force of particle 1 on particle 2 is $F_{21}=k \frac{q_{1} q_{2}}{r^{2}}$, where $r=\sqrt{d_{1}^{2}+d_{2}^{2}}$ and $k=1 / 4 \pi \varepsilon_{0}=8.99 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}^{2}$. Since both q_{1} and q_{2} are positively charged, particle 2 is repelled by particle 1 , so the direction of \vec{F}_{21} is away from particle 1 and toward 2. In unit-vector notation, $\vec{F}_{21}=F_{21} \hat{r}$, where

$$
\hat{\mathrm{r}}=\frac{\vec{r}}{r}=\frac{\left(d_{2} \hat{\mathrm{i}}-d_{1} \hat{\mathrm{j}}\right)}{\sqrt{d_{1}^{2}+d_{2}^{2}}} .
$$

The x component of \vec{F}_{21} is $F_{21, x}=F_{21} d_{2} / \sqrt{d_{1}^{2}+d_{2}^{2}}$. Combining the expressions above, we obtain

$$
\begin{aligned}
F_{21, x} & =k \frac{q_{1} q_{2} d_{2}}{r^{3}}=k \frac{q_{1} q_{2} d_{2}}{\left(d_{1}^{2}+d_{2}^{2}\right)^{3 / 2}} \\
& =\frac{\left(8.99 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}^{2}\right)\left(4 \cdot 1.60 \times 10^{-19} \mathrm{C}\right)\left(6 \cdot 1.60 \times 10^{-19} \mathrm{C}\right)\left(6.00 \times 10^{-3} \mathrm{~m}\right)}{\left[\left(2.00 \times 10^{-3} \mathrm{~m}\right)^{2}+\left(6.00 \times 10^{-3} \mathrm{~m}\right)^{2}\right]^{3 / 2}} \\
& =1.31 \times 10^{-22} \mathrm{~N}
\end{aligned}
$$

Note: In a similar manner, we find the y component of \vec{F}_{21} to be

$$
\begin{aligned}
F_{21, y} & =-k \frac{q_{1} q_{2} d_{1}}{r^{3}}=-k \frac{q_{1} q_{2} d_{1}}{\left(d_{1}^{2}+d_{2}^{2}\right)^{3 / 2}} \\
& =-\frac{\left(8.99 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}^{2}\right)\left(4 \cdot 1.60 \times 10^{-19} \mathrm{C}\right)\left(6 \cdot 1.60 \times 10^{-19} \mathrm{C}\right)\left(2.00 \times 10^{-3} \mathrm{~m}\right)}{\left[\left(2.00 \times 10^{-3} \mathrm{~m}\right)^{2}+\left(6.00 \times 10^{-3} \mathrm{~m}\right)^{2}\right]^{3 / 2}} \\
& =-0.437 \times 10^{-22} \mathrm{~N}
\end{aligned}
$$

Thus, $\vec{F}_{21}=\left(1.31 \times 10^{-22} \mathrm{~N}\right) \hat{\mathrm{i}}-\left(0.437 \times 10^{-22} \mathrm{~N}\right) \hat{\mathrm{j}}$.

Problem 21-56

(a) Equation 21-11 (in absolute value) gives

$$
n=\frac{|q|}{e}=\frac{2.00 \times 10^{-6} \mathrm{C}}{1.60 \times 10^{-19} \mathrm{C}}=1.25 \times 10^{13} \text { electrons. }
$$

(b) Since you have the excess electrons (and electrons are lighter and more mobile than protons) then the electrons "leap" from you to the faucet instead of protons moving from the faucet to you (in the process of neutralizing your body).
(c) Unlike charges attract, and the faucet (which is grounded and is able to gain or lose any number of electrons due to its contact with Earth’s large reservoir of mobile charges) becomes
positively charged, especially in the region closest to your (negatively charged) hand, just before the spark.
(d) The cat is positively charged (before the spark), and by the reasoning given in part (b) the flow of charge (electrons) is from the faucet to the cat.
(e) If we think of the nose as a conducting sphere, then the side of the sphere closest to the fur is of one sign (of charge) and the side furthest from the fur is of the opposite sign (which, additionally, is oppositely charged from your bare hand, which had stroked the cat's fur). The charges in your hand and those of the furthest side of the "sphere" therefore attract each other, and when close enough, manage to neutralize (due to the "jump" made by the electrons) in a painful spark.

Problem 21-63

The magnitude of the net force on the $q=42 \times 10^{-6} \mathrm{C}$ charge is

$$
k \frac{q_{1} q}{0.28^{2}}+k \frac{\left|q_{2}\right| q}{0.44^{2}}
$$

where $q_{1}=30 \times 10^{-9} \mathrm{C}$ and $\left|q_{2}\right|=40 \times 10^{-9} \mathrm{C}$. This yields 0.22 N . Using Newton's second law, we obtain
$m=\frac{F}{a}=\frac{0.22 \mathrm{~N}}{100 \times 10^{3} \mathrm{~m} / \mathrm{s}^{2}}=2.2 \times 10^{-6} \mathrm{~kg}$.

Problem 21-64

Let the two charges be q_{1} and q_{2}. Then $q_{1}+q_{2}=Q=5.0 \times 10^{-5} \mathrm{C}$. We use Eq. 21-1:

$$
1.0 \mathrm{~N}=\frac{\left(8.99 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}^{2}\right) q_{1} q_{2}}{(2.0 \mathrm{~m})^{2}}
$$

We substitute $q_{2}=Q-q_{1}$ and solve for q_{1} using the quadratic formula. The two roots obtained are the values of q_{1} and q_{2}, since it does not matter which is which. We get $1.2 \times 10^{-5} \mathrm{C}$ and 3.8 $\times 10^{-5} \mathrm{C}$. Thus, the charge on the sphere with the smaller charge is $1.2 \times 10^{-5} \mathrm{C}$.

