
Physics 4B 
 

Solutions to Chapter 22 HW 
 
Chapter 22:  Questions: 4, 8, 10   
  Problems: 7, 21, 28, 31, 37, 45, 48, 54, 77 
 
 
 

Question 22-4 
2, 4, 3, 1 (zero) 
 

Question 22-8 
(a) positive; (b) same 
 

Question 22-10 
(a) rightward;(b) +q1 and -q3, increase; +q2, decrease; n, same 

 
 
Problem 22-7 
The x component of the electric field at the center of the square is given by  
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Similarly, the y component of the electric field is  
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Thus, the electric field at the center of the square is 5ĵ (1.02 10  N/C)j.yE E= = ×  The net electric 
field is depicted in the figure below (not to scale). The field, pointing to the +y direction, is the 
vector sum of the electric fields of individual charges. 



 
 
 
 
Problem 22-21 
Think of the quadrupole as composed of two dipoles, each with dipole moment of magnitude p = 
qd. The moments point in opposite directions and produce fields in opposite directions at points 
on the quadrupole axis. Consider the point P on the axis, a distance z to the right of the 
quadrupole center and take a rightward pointing field to be positive. Then, the field produced by 
the right dipole of the pair is qd/2πε0(z – d/2)3 and the field produced by the left dipole is –
qd/2πε0(z + d/2)3. Use the binomial expansions 
  

 (z – d/2)–3 ≈ z–3 – 3z–4(–d/2)  
 

(z + d/2)–3 ≈ z–3 – 3z–4(d/2) 
 
to obtain 
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Let Q = 2qd 2. We have E Q
z
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Problem 22-28 
We find the maximum by differentiating Eq. 22-16 and setting the result equal to zero. 
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which leads to z R= / 2 . With R = 2.40 cm, we have z = 1.70 cm. 
 
 



Problem 22-31 
(a) The linear charge density is the charge per unit length of rod. Since the charge is uniformly 

distributed on the rod,   
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(b) We position the x axis along the rod with the origin at the left end of the rod, as shown in the 
diagram.  

 
 
Let dx be an infinitesimal length of rod at x. The charge in this segment is . The charge 
dq may be considered to be a point charge. The electric field it produces at point P has only an x 
component, and this component is given by 

dq dx= λ
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The total electric field produced at P by the whole rod is the integral 
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upon substituting q Lλ− =

 N/C |
. With q = 4.23 × 10−15 C, L =0.0815 m and a = 0.120 m, we obtain 

, or  . 31.57 10xE −= − × 3| 1.57 10  N/CxE −= ×
 

(c) The negative sign in xE indicates that the field points in the –x direction, or −180° 
counterclockwise from the +x axis. 
 
(d) If a is much larger than L, the quantity L + a in the denominator can be approximated by a, 
and the expression for the electric field becomes 
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Since  the above approximation applies, and we have 

, or . 
50 m  0.0815 m,a L= =

81.52 10  N/C−× | |xExE = − 81.52 10  N/C−= ×
 



(e) For a particle of charge the electric field at a distance a = 50 m away has 
a magnitude | . 

154.23 10  C,q −− = − ×
810  N/C−= ×| 1.52xE

 
 
Problem 22-37 
We use Eq. 22-26, noting that the disk in figure (b) is effectively equivalent to the disk in figure 

(a) plus a concentric smaller disk (of radius R/2) with the opposite value of σ. That is,  
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We find the relative difference and simplify: 
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or approximately 28%. 
 
 
Problem 22-45 
We combine Eq. 22-9 and Eq. 22-28 (in absolute values). 
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where we have used Eq. 21-5 for the constant k in the last step. Thus, we obtain 
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F  points in the –z direction. If the dipole is oriented such that p  is in the +z direction, then 

 
 
Problem 22-48 
We are given σ = 4.00 × 10−6 C/m2 and various values of z (in the notation of Eq. 22-26, which 
specifies the field E of the charged disk). Using this with F = eE (the magnitude of Eq. 22-28 
applied to the electron) and F = ma, we obtain / /a F m eE m= = . 
 
(a) The magnitude of the acceleration at a distance R is  
 

a = 
e σ (2 − 2 )

4 m εo
 = 1.16 × 1016 m/s2  . 

 



(b) At a distance R/100, a =  
e σ (10001 − 10001 )

20002 m εo
 = 3.94 × 1016 m/s2  . 

  

(c) At a distance R/1000, a  =  
e σ (1000001 − 1000001 )

2000002 m εo
 = 3.97 × 1016 m/s2  . 

 
(d) The field due to the disk becomes more uniform as the electron nears the center point.  One 

way to view this is to consider the forces exerted on the electron by the charges near the 
edge of the disk; the net force on the electron caused by those charges will decrease due to 
the fact that their contributions come closer to canceling out as the electron approaches the 
middle of the disk. 

 
 
Problem 22-54 
Due to the fact that the electron is negatively charged, then (as a consequence of Eq. 22-28 and 
Newton’s second law) the field E  

→
  pointing in the +y direction (which we will call “upward”) 

leads to a downward acceleration.  This is exactly like a projectile motion problem as treated in 
Chapter 4 (but with g replaced with a = eE/m = 8.78 × 1011 m/s2).  Thus, Eq. 4-21 gives 
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This leads (using Eq. 4-23) to  
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Since the x component of velocity does not change, then the final velocity is  
 
 v  
→

  = (1.53 × 106 m/s) i^ − (4.34 × 105 m/s) j^  . 
 
 
 
Problem 22-77 
(a) Since the two charges in question are of the same sign, the point x = 2.0 mm should be 
located in between them (so that the field vectors point in the opposite direction). Let the 
coordinate of the second particle be x' (x' > 0). Then, the magnitude of the field due to the charge 
–q1 evaluated at x is given by E = q1/4πε0x2, while that due to the second charge –4q1 is E' = 4q1 
/4πε0(x' – x)2. We set the net field equal to zero: 
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Thus, we obtain x' = 3x = 3(2.0 mm) = 6.0 mm. 
 



(b) In this case, with the second charge now positive, the electric field vectors produced by both 
charges are in the negative x direction, when evaluated at x = 2.0 mm. Therefore, the net 
field points in the negative x direction, or 180°, measured counterclockwise from the +x 
axis. 
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