Physics 4B

Solutions to Chapter 27 HW

Chapter 27: Questions: 2, 8, 10 Problems: 1, 23, 33, 45, 48, 61, 63, 72, 92

Question 27-2

(a) no (b) yes (c) all tie

Question 27-8 60 µC

Question 27-10 1, c; 2, a; 3, d; 4, b

Problem 27-1

(a) Let *i* be the current in the circuit and take it to be positive if it is to the left in R_1 . We use Kirchhoff's loop rule: $\varepsilon_1 - iR_2 - iR_1 - \varepsilon_2 = 0$. We solve for *i*:

 $i = \frac{\varepsilon_1 - \varepsilon_2}{R_1 + R_2} = \frac{12 \text{ V} - 6.0 \text{ V}}{4.0\Omega + 8.0\Omega} = 0.50 \text{ A}.$

A positive value is obtained, so the current is counterclockwise around the circuit.

If *i* is the current in a resistor *R*, then the power dissipated by that resistor is given by $P = i^2 R$.

(b) For
$$R_1$$
, $P_1 = i^2 R_1 = (0.50 \text{ A})^2 (4.0 \Omega) = 1.0 \text{ W}$,

(c) and for R_2 , $P_2 = i^2 R_2 = (0.50 \text{ A})^2 (8.0 \Omega) = 2.0 \text{ W}$.

If *i* is the current in a battery with emf ε , then the battery supplies energy at the rate $P = i\varepsilon$ provided the current and emf are in the same direction. The battery absorbs energy at the rate $P = i\varepsilon$ if the current and emf are in opposite directions.

(d) For ε_1 , $P_1 = i\varepsilon_1 = (0.50 \text{ A})(12 \text{ V}) = 6.0 \text{ W}$

(e) and for ε_2 , $P_2 = i\varepsilon_2 = (0.50 \text{ A})(6.0 \text{ V}) = 3.0 \text{ W}$.

(f) In battery 1 the current is in the same direction as the emf. Therefore, this battery supplies energy to the circuit; the battery is discharging.

(g) The current in battery 2 is opposite the direction of the emf, so this battery absorbs energy from the circuit. It is charging.

Problem 27-23

Let i_1 be the current in R_1 and take it to be positive if it is to the right. Let i_2 be the current in R_2 and take it to be positive if it is upward.

(a) When the loop rule is applied to the lower loop, the result is

$$\varepsilon_2 - i_1 R_1 = 0$$
.

The equation yields

$$i_1 = \frac{\varepsilon_2}{R_1} = \frac{5.0 \text{ V}}{100 \Omega} = 0.050 \text{ A}.$$

(b) When it is applied to the upper loop, the result is

$$\varepsilon_1 - \varepsilon_2 - \varepsilon_3 - i_2 R_2 = 0 \; .$$

The equation gives

$$i_2 = \frac{\varepsilon_1 - \varepsilon_2 - \varepsilon_3}{R_2} = \frac{6.0 \text{ V} - 5.0 \text{ V} - 4.0 \text{ V}}{50 \Omega} = -0.060 \text{ A},$$

or $|i_2| = 0.060$ A. The negative sign indicates that the current in R_2 is actually downward.

(c) If V_b is the potential at point b, then the potential at point a is $V_a = V_b + \varepsilon_3 + \varepsilon_2$, so

$$V_a - V_b = \varepsilon_3 + \varepsilon_2 = 4.0 \text{ V} + 5.0 \text{ V} = 9.0 \text{ V}.$$

Problem 27-33

First, we note in V_4 , that the voltage across R_4 is equal to the sum of the voltages across R_5 and R_6 :

$$V_4 = i_6(R_5 + R_6) = (1.40 \text{ A})(8.00 \Omega + 4.00 \Omega) = 16.8 \text{ V}.$$

The current through R_4 is then equal to $i_4 = V_4/R_4 = 16.8 \text{ V}/(16.0 \Omega) = 1.05 \text{ A}.$

By the junction rule, the current in R_2 is

$$i_2 = i_4 + i_6 = 1.05 \text{ A} + 1.40 \text{ A} = 2.45 \text{ A},$$

so its voltage is $V_2 = (2.00 \Omega)(2.45 \text{ A}) = 4.90 \text{ V}.$

The loop rule tells us the voltage across R_3 is $V_3 = V_2 + V_4 = 21.7$ V (implying that the current through it is $i_3 = V_3/(2.00 \Omega) = 10.85$ A).

The junction rule now gives the current in R_1 as $i_1 = i_2 + i_3 = 2.45 \text{ A} + 10.85 \text{ A} = 13.3 \text{ A}$, implying that the voltage across it is $V_1 = (13.3 \text{ A})(2.00 \Omega) = 26.6 \text{ V}$. Therefore, by the loop rule,

$$\mathcal{E} = V_1 + V_3 = 26.6 \text{ V} + 21.7 \text{ V} = 48.3 \text{ V}.$$

Problem 27-45

(a) We note that the R_1 resistors occur in series pairs, contributing net resistance $2R_1$ in each branch where they appear. Since $\varepsilon_2 = \varepsilon_3$ and $R_2 = 2R_1$, from symmetry we know that the currents through ε_2 and ε_3 are the same: $i_2 = i_3 = i$. Therefore, the current through ε_1 is $i_1 = 2i$. Then from $V_b - V_a = \varepsilon_2 - iR_2 = \varepsilon_1 + (2R_1)(2i)$ we get

$$i = \frac{\varepsilon_2 - \varepsilon_1}{4R_1 + R_2} = \frac{4.0 \,\mathrm{V} - 2.0 \,\mathrm{V}}{4(1.0 \,\Omega) + 2.0 \,\Omega} = 0.33 \,\mathrm{A}.$$

Therefore, the current through ε_1 is $i_1 = 2i = 0.67$ A.

- (b) The direction of i_1 is downward.
- (c) The current through ε_2 is $i_2 = 0.33$ A.
- (d) The direction of i_2 is upward.
- (e) From part (a), we have $i_3 = i_2 = 0.33$ A.
- (f) The direction of i_3 is also upward.
- (g) $V_a V_b = -iR_2 + \varepsilon_2 = -(0.333 \text{ A})(2.0 \Omega) + 4.0 \text{ V} = 3.3 \text{ V}.$

Problem 27-48

(a) We use $P = \varepsilon^2 / R_{eq}$, where

$$R_{\rm eq} = 7.00\,\Omega + \frac{(12.0\,\Omega)(4.00\,\Omega)R}{(12.0\,\Omega)(4.0\,\Omega) + (12.0\,\Omega)R + (4.00\,\Omega)R}$$

Put P = 60.0 W and $\varepsilon = 24.0$ V and solve for R: $R = 19.5 \Omega$.

- (b) Since $P \propto R_{eq}$, we must minimize R_{eq} , which means R = 0.
- (c) Now we must maximize R_{eq} , or set $R = \infty$.
- (d) Since $R_{\rm eq, min} = 7.00 \Omega$, $P_{\rm max} = \varepsilon^2 / R_{\rm eq, min} = (24.0 \text{ V})^2 / 7.00 \Omega = 82.3 \text{ W}$.
- (e) Since $R_{\rm eq, max} = 7.00 \ \Omega + (12.0 \ \Omega)(4.00 \ \Omega)/(12.0 \ \Omega + 4.00 \ \Omega) = 10.0 \ \Omega$,

$$P_{\rm min} = \varepsilon^2 / R_{\rm eq, \, max} = (24.0 \text{ V})^2 / 10.0 \ \Omega = 57.6 \text{ W}.$$

Problem 27-61

(a) The voltage difference V across the capacitor is $V(t) = \varepsilon(1 - e^{-t/RC})$. At $t = 1.30 \ \mu$ s we have V(t) = 5.00 V, so $5.00 \text{ V} = (12.0 \text{ V})(1 - e^{-1.30 \ \mu s/RC})$, which gives

$$\tau = (1.30 \ \mu \text{ s})/\ln(12/7) = 2.41 \ \mu \text{s}.$$

(b) The capacitance is $C = \tau/R = (2.41 \ \mu s)/(15.0 \ k\Omega) = 161 \ pF.$

Problem 27-63

At t = 0 the capacitor is completely uncharged and the current in the capacitor branch is as it would be if the capacitor were replaced by a wire. Let i_1 be the current in R_1 and take it to be positive if it is to the right. Let i_2 be the current in R_2 and take it to be positive if it is downward. Let i_3 be the current in R_3 and take it to be positive if it is downward. The junction rule produces $i_1 = i_2 + i_3$, the loop rule applied to the left-hand loop produces

$$\varepsilon - i_1 R_1 - i_2 R_2 = 0 ,$$

and the loop rule applied to the right-hand loop produces

$$i_2 R_2 - i_3 R_3 = 0 \; .$$

Since the resistances are all the same we can simplify the mathematics by replacing R_1 , R_2 , and R_3 with R.

(a) Solving the three simultaneous equations, we find

$$i_1 = \frac{2\varepsilon}{3R} = \frac{2(1.2 \times 10^3 \text{ V})}{3(0.73 \times 10^6 \Omega)} = 1.1 \times 10^{-3} \text{ A},$$

(b)
$$i_2 = \frac{\varepsilon}{3R} = \frac{1.2 \times 10^3 \text{ V}}{3(0.73 \times 10^6 \Omega)} = 5.5 \times 10^{-4} \text{ A}$$
, and

(c) $i_3 = i_2 = 5.5 \times 10^{-4} \text{ A}.$

At $t = \infty$ the capacitor is fully charged and the current in the capacitor branch is 0. Thus, $i_1 = i_2$, and the loop rule yields

$$\varepsilon - i_1 R_1 - i_1 R_2 = 0 \; .$$

(d) The solution is

$$i_1 = \frac{\varepsilon}{2R} = \frac{1.2 \times 10^3 \text{ V}}{2(0.73 \times 10^6 \Omega)} = 8.2 \times 10^{-4} \text{ A}.$$

(e) $i_2 = i_1 = 8.2 \times 10^{-4} \text{ A}.$

(f) As stated before, the current in the capacitor branch is $i_3 = 0$.

We take the upper plate of the capacitor to be positive. This is consistent with current flowing into that plate. The junction equation is $i_1 = i_2 + i_3$, and the loop equations are

$$\varepsilon - i_1 R - i_2 R = 0$$
$$-\frac{q}{C} - i_3 R + i_2 R = 0.$$

We use the first equation to substitute for i_1 in the second and obtain $\varepsilon - 2i_2R - i_3R = 0$. Thus $i_2 = (\varepsilon - i_3R)/2R$. We substitute this expression into the third equation above to obtain

$$-(q/C) - (i_3R) + (\varepsilon/2) - (i_3R/2) = 0.$$

Now we replace i_3 with dq/dt to obtain

$$\frac{3R}{2}\frac{dq}{dt} + \frac{q}{C} = \frac{\varepsilon}{2} \; .$$

This is just like the equation for an *RC* series circuit, except that the time constant is $\tau = 3RC/2$ and the impressed potential difference is $\varepsilon/2$. The solution is

$$q = \frac{C\varepsilon}{2} \left(1 - e^{-2t/3RC} \right).$$

The current in the capacitor branch is

$$i_3(t) = \frac{dq}{dt} = \frac{\varepsilon}{3R} e^{-2t/3RC}$$

The current in the center branch is

$$i_2(t) = \frac{\varepsilon}{2R} - \frac{i_3}{2} = \frac{\varepsilon}{2R} - \frac{\varepsilon}{6R} e^{-2t/3RC} = \frac{\varepsilon}{6R} \left(3 - e^{-2t/3RC}\right)$$

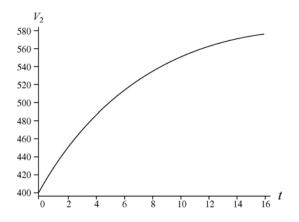
and the potential difference across R_2 is

$$V_2(t) = i_2 R = \frac{\varepsilon}{6} (3 - e^{-2t/3RC}).$$

(g) For t = 0, $e^{-2t/3RC} = 1$ and $V_2 = \varepsilon/3 = (1.2 \times 10^3 \text{ V})/3 = 4.0 \times 10^2 \text{ V}$.

(h) For $t = \infty$, $e^{-2t/3RC} \to 0$ and $V_2 = \varepsilon/2 = (1.2 \times 20^3 \text{ V})/2 = 6.0 \times 10^2 \text{ V}$.

(i) A plot of V_2 as a function of time is shown in the following graph.



Problem 27-72

(a) The four resistors R_1 , R_2 , R_3 , and R_4 on the left reduce to

$$R_{\rm eq} = R_{12} + R_{34} = \frac{R_1 R_2}{R_1 + R_2} + \frac{R_3 R_4}{R_3 + R_4} = 7.0 \,\Omega + 3.0 \,\Omega = 10 \,\Omega \,.$$

With $\varepsilon = 30$ V across R_{eq} the current there is $i_2 = 3.0$ A.

(b) The three resistors on the right reduce to

$$R'_{\rm eq} = R_{56} + R_7 = \frac{R_5 R_6}{R_5 + R_6} + R_7 = \frac{(6.0 \,\Omega)(2.0 \,\Omega)}{6.0 \,\Omega + 2.0 \,\Omega} + 1.5 \,\Omega = 3.0 \,\Omega \,.$$

With $\varepsilon = 30$ V across R'_{eq} the current there is $i_4 = 10$ A.

- (c) By the junction rule, $i_1 = i_2 + i_4 = 13$ A.
- (d) By symmetry, $i_3 = \frac{1}{2}i_2 = 1.5$ A.

(e) By the loop rule (proceeding clockwise),

$$30V - i_4(1.5 \Omega) - i_5(2.0 \Omega) = 0$$

readily yields $i_5 = 7.5$ A.

Problem 27-92

The equivalent resistance of the series pair of $R_3 = R_4 = 2.0 \Omega$ is $R_{34} = 4.0 \Omega$, and the equivalent resistance of the parallel pair of $R_1 = R_2 = 4.0 \Omega$ is $R_{12} = 2.0 \Omega$. Since the voltage across R_{34} must equal that across R_{12} :

$$V_{34} = V_{12} \implies i_{34}R_{34} = i_{12}R_{12} \implies i_{34} = \frac{1}{2}i_{12}$$

This relation, plus the junction rule condition $I = i_{12} + i_{34} = 6.00$ A, leads to the solution $i_{12} = 4.0$ A. It is clear by symmetry that $i_1 = i_{12} / 2 = 2.00$ A.