Physics 4B

Solutions to Chapter 27 HW

Chapter 27: Questions: 2, 8, 10

Problems: 1, 23, 33, 45, 48, 61, 63, 72, 92

Question 27-2

(a) no (b) yes (c) all tie

Question 27-8

$60 \mu \mathrm{C}$

Question 27-10

$1, c ; 2, a ; 3, d ; 4, b$

Problem 27-1

(a) Let i be the current in the circuit and take it to be positive if it is to the left in R_{1}. We use Kirchhoff's loop rule: $\varepsilon_{1}-i R_{2}-i R_{1}-\varepsilon_{2}=0$. We solve for i :

$$
i=\frac{\varepsilon_{1}-\varepsilon_{2}}{R_{1}+R_{2}}=\frac{12 \mathrm{~V}-6.0 \mathrm{~V}}{4.0 \Omega+8.0 \Omega}=0.50 \mathrm{~A} .
$$

A positive value is obtained, so the current is counterclockwise around the circuit.
If i is the current in a resistor R, then the power dissipated by that resistor is given by $P=i^{2} R$.
(b) For $R_{1}, P_{1}=i^{2} R_{1}=(0.50 \mathrm{~A})^{2}(4.0 \Omega)=1.0 \mathrm{~W}$,
(c) and for $R_{2}, P_{2}=i^{2} R_{2}=(0.50 \mathrm{~A})^{2}(8.0 \Omega)=2.0 \mathrm{~W}$.

If i is the current in a battery with emf ε, then the battery supplies energy at the rate $P=i \varepsilon$ provided the current and emf are in the same direction. The battery absorbs energy at the rate P $=i \varepsilon$ if the current and emf are in opposite directions.
(d) For $\varepsilon_{1}, P_{1}=i \varepsilon_{1}=(0.50 \mathrm{~A})(12 \mathrm{~V})=6.0 \mathrm{~W}$
(e) and for $\varepsilon_{2}, P_{2}=i \varepsilon_{2}=(0.50 \mathrm{~A})(6.0 \mathrm{~V})=3.0 \mathrm{~W}$.
(f) In battery 1 the current is in the same direction as the emf. Therefore, this battery supplies energy to the circuit; the battery is discharging.
(g) The current in battery 2 is opposite the direction of the emf, so this battery absorbs energy from the circuit. It is charging.

Problem 27-23

Let i_{1} be the current in R_{1} and take it to be positive if it is to the right. Let i_{2} be the current in R_{2} and take it to be positive if it is upward.
(a) When the loop rule is applied to the lower loop, the result is

$$
\varepsilon_{2}-i_{1} R_{1}=0 .
$$

The equation yields

$$
i_{1}=\frac{\varepsilon_{2}}{R_{1}}=\frac{5.0 \mathrm{~V}}{100 \Omega}=0.050 \mathrm{~A} .
$$

(b) When it is applied to the upper loop, the result is

$$
\varepsilon_{1}-\varepsilon_{2}-\varepsilon_{3}-i_{2} R_{2}=0 .
$$

The equation gives

$$
i_{2}=\frac{\varepsilon_{1}-\varepsilon_{2}-\varepsilon_{3}}{R_{2}}=\frac{6.0 \mathrm{~V}-5.0 \mathrm{~V}-4.0 \mathrm{~V}}{50 \Omega}=-0.060 \mathrm{~A},
$$

or $\left|i_{2}\right|=0.060 \mathrm{~A}$. The negative sign indicates that the current in R_{2} is actually downward.
(c) If V_{b} is the potential at point b, then the potential at point a is $V_{a}=V_{b}+\varepsilon_{3}+\varepsilon_{2}$, so

$$
V_{a}-V_{b}=\varepsilon_{3}+\varepsilon_{2}=4.0 \mathrm{~V}+5.0 \mathrm{~V}=9.0 \mathrm{~V}
$$

Problem 27-33

First, we note in V_{4}, that the voltage across R_{4} is equal to the sum of the voltages across R_{5} and R_{6} :

$$
V_{4}=i_{6}\left(R_{5}+R_{6}\right)=(1.40 \mathrm{~A})(8.00 \Omega+4.00 \Omega)=16.8 \mathrm{~V}
$$

The current through R_{4} is then equal to $i_{4}=V_{4} / R_{4}=16.8 \mathrm{~V} /(16.0 \Omega)=1.05 \mathrm{~A}$.
By the junction rule, the current in R_{2} is

$$
i_{2}=i_{4}+i_{6}=1.05 \mathrm{~A}+1.40 \mathrm{~A}=2.45 \mathrm{~A},
$$

so its voltage is $V_{2}=(2.00 \Omega)(2.45 \mathrm{~A})=4.90 \mathrm{~V}$.
The loop rule tells us the voltage across R_{3} is $V_{3}=V_{2}+V_{4}=21.7 \mathrm{~V}$ (implying that the current through it is $\left.i_{3}=V_{3} /(2.00 \Omega)=10.85 \mathrm{~A}\right)$.

The junction rule now gives the current in R_{1} as $i_{1}=i_{2}+i_{3}=2.45 \mathrm{~A}+10.85 \mathrm{~A}=13.3 \mathrm{~A}$, implying that the voltage across it is $V_{1}=(13.3 \mathrm{~A})(2.00 \Omega)=26.6 \mathrm{~V}$. Therefore, by the loop rule,

$$
\varepsilon=V_{1}+V_{3}=26.6 \mathrm{~V}+21.7 \mathrm{~V}=48.3 \mathrm{~V}
$$

Problem 27-45

(a) We note that the R_{1} resistors occur in series pairs, contributing net resistance $2 R_{1}$ in each branch where they appear. Since $\varepsilon_{2}=\varepsilon_{3}$ and $R_{2}=2 R_{1}$, from symmetry we know that the currents through ε_{2} and ε_{3} are the same: $i_{2}=i_{3}=i$. Therefore, the current through ε_{1} is $i_{1}=2 i$. Then from $V_{b}-V_{a}=\varepsilon_{2}-i R_{2}=\varepsilon_{1}+\left(2 R_{1}\right)(2 i)$ we get

$$
i=\frac{\varepsilon_{2}-\varepsilon_{1}}{4 R_{1}+R_{2}}=\frac{4.0 \mathrm{~V}-2.0 \mathrm{~V}}{4(1.0 \Omega)+2.0 \Omega}=0.33 \mathrm{~A} .
$$

Therefore, the current through \mathcal{E}_{1} is $i_{1}=2 i=0.67 \mathrm{~A}$.
(b) The direction of i_{1} is downward.
(c) The current through ε_{2} is $i_{2}=0.33 \mathrm{~A}$.
(d) The direction of i_{2} is upward.
(e) From part (a), we have $i_{3}=i_{2}=0.33 \mathrm{~A}$.
(f) The direction of i_{3} is also upward.
(g) $V_{a}-V_{b}=-i R_{2}+\varepsilon_{2}=-(0.333 \mathrm{~A})(2.0 \Omega)+4.0 \mathrm{~V}=3.3 \mathrm{~V}$.

Problem 27-48

(a) We use $P=\varepsilon^{2} / R_{\text {eq }}$, where

$$
R_{\mathrm{eq}}=7.00 \Omega+\frac{(12.0 \Omega)(4.00 \Omega) R}{(12.0 \Omega)(4.0 \Omega)+(12.0 \Omega) R+(4.00 \Omega) R}
$$

Put $P=60.0 \mathrm{~W}$ and $\varepsilon=24.0 \mathrm{~V}$ and solve for $R: R=19.5 \Omega$.
(b) Since $P \propto R_{\text {eq }}$, we must minimize $R_{\text {eq }}$, which means $R=0$.
(c) Now we must maximize $R_{\text {eq }}$, or set $R=\infty$.
(d) Since $R_{\text {eq, min }}=7.00 \Omega, P_{\max }=\varepsilon^{2} / R_{\text {eq, } \min }=(24.0 \mathrm{~V})^{2} / 7.00 \Omega=82.3 \mathrm{~W}$.
(e) Since $R_{\text {eq, } \max }=7.00 \Omega+(12.0 \Omega)(4.00 \Omega) /(12.0 \Omega+4.00 \Omega)=10.0 \Omega$,

$$
P_{\min }=\varepsilon^{2} / R_{\mathrm{eq}, \max }=(24.0 \mathrm{~V})^{2} / 10.0 \Omega=57.6 \mathrm{~W} .
$$

Problem 27-61
(a) The voltage difference V across the capacitor is $V(t)=\delta\left(1-e^{-t / R C}\right)$. At $t=1.30 \mu$ s we have $V(t)=5.00 \mathrm{~V}$, so $5.00 \mathrm{~V}=(12.0 \mathrm{~V})\left(1-e^{-1.30 \mu \mathrm{~s} / R C}\right)$, which gives

$$
\tau=(1.30 \mu \mathrm{~s}) / \ln (12 / 7)=2.41 \mu \mathrm{~s} .
$$

(b) The capacitance is $C=\tau / R=(2.41 \mu \mathrm{~s}) /(15.0 \mathrm{k} \Omega)=161 \mathrm{pF}$.

Problem 27-63

At $t=0$ the capacitor is completely uncharged and the current in the capacitor branch is as it would be if the capacitor were replaced by a wire. Let i_{1} be the current in R_{1} and take it to be positive if it is to the right. Let i_{2} be the current in R_{2} and take it to be positive if it is downward. Let i_{3} be the current in R_{3} and take it to be positive if it is downward. The junction rule produces $i_{1}=i_{2}+i_{3}$, the loop rule applied to the left-hand loop produces

$$
\varepsilon-i_{1} R_{1}-i_{2} R_{2}=0,
$$

and the loop rule applied to the right-hand loop produces

$$
i_{2} R_{2}-i_{3} R_{3}=0 .
$$

Since the resistances are all the same we can simplify the mathematics by replacing R_{1}, R_{2}, and R_{3} with R.
(a) Solving the three simultaneous equations, we find

$$
i_{1}=\frac{2 \varepsilon}{3 R}=\frac{2\left(1.2 \times 10^{3} \mathrm{~V}\right)}{3\left(0.73 \times 10^{6} \Omega\right)}=1.1 \times 10^{-3} \mathrm{~A},
$$

(b) $i_{2}=\frac{\varepsilon}{3 R}=\frac{1.2 \times 10^{3} \mathrm{~V}}{3\left(0.73 \times 10^{6} \Omega\right)}=5.5 \times 10^{-4} \mathrm{~A}$, and
(c) $i_{3}=i_{2}=5.5 \times 10^{-4} \mathrm{~A}$.

At $t=\infty$ the capacitor is fully charged and the current in the capacitor branch is 0 . Thus, $i_{1}=i_{2}$, and the loop rule yields

$$
\varepsilon-i_{1} R_{1}-i_{1} R_{2}=0 .
$$

(d) The solution is

$$
i_{1}=\frac{\varepsilon}{2 R}=\frac{1.2 \times 10^{3} \mathrm{~V}}{2\left(0.73 \times 10^{6} \Omega\right)}=8.2 \times 10^{-4} \mathrm{~A} .
$$

(e) $i_{2}=i_{1}=8.2 \times 10^{-4} \mathrm{~A}$.
(f) As stated before, the current in the capacitor branch is $i_{3}=0$.

We take the upper plate of the capacitor to be positive. This is consistent with current flowing into that plate. The junction equation is $i_{1}=i_{2}+i_{3}$, and the loop equations are

$$
\begin{aligned}
\varepsilon-i_{1} R-i_{2} R & =0 \\
-\frac{q}{C}-i_{3} R+i_{2} R & =0 .
\end{aligned}
$$

We use the first equation to substitute for i_{1} in the second and obtain $\varepsilon-2 i_{2} R-i_{3} R=0$. Thus $i_{2}=$ $\left(\varepsilon-i_{3} R\right) / 2 R$. We substitute this expression into the third equation above to obtain

$$
-(q / C)-\left(i_{3} R\right)+(\varepsilon / 2)-\left(i_{3} R / 2\right)=0 .
$$

Now we replace i_{3} with $d q / d t$ to obtain

$$
\frac{3 R}{2} \frac{d q}{d t}+\frac{q}{C}=\frac{\varepsilon}{2}
$$

This is just like the equation for an $R C$ series circuit, except that the time constant is $\tau=3 R C / 2$ and the impressed potential difference is $\varepsilon / 2$. The solution is

$$
q=\frac{C \varepsilon}{2}\left(1-e^{-2 t / 3 R C}\right)
$$

The current in the capacitor branch is

$$
i_{3}(t)=\frac{d q}{d t}=\frac{\varepsilon}{3 R} e^{-2 t / 3 R C} .
$$

The current in the center branch is

$$
i_{2}(t)=\frac{\varepsilon}{2 R}-\frac{i_{3}}{2}=\frac{\varepsilon}{2 R}-\frac{\varepsilon}{6 R} e^{-2 t / 3 R C}=\frac{\varepsilon}{6 R}\left(3-e^{-2 t / 3 R C}\right)
$$

and the potential difference across R_{2} is

$$
V_{2}(t)=i_{2} R=\frac{\varepsilon}{6}\left(3-e^{-2 t / 3 R C}\right) .
$$

(g) For $t=0, e^{-2 t / 3 R C}=1$ and $V_{2}=\varepsilon / 3=\left(1.2 \times 10^{3} \mathrm{~V}\right) / 3=4.0 \times 10^{2} \mathrm{~V}$.
(h) For $t=\infty, e^{-2 t / 3 R C} \rightarrow 0$ and $V_{2}=\varepsilon / 2=\left(1.2 \times 20^{3} \mathrm{~V}\right) / 2=6.0 \times 10^{2} \mathrm{~V}$.
(i) A plot of V_{2} as a function of time is shown in the following graph.

Problem 27-72

(a) The four resistors R_{1}, R_{2}, R_{3}, and R_{4} on the left reduce to

$$
R_{\mathrm{eq}}=R_{12}+R_{34}=\frac{R_{1} R_{2}}{R_{1}+R_{2}}+\frac{R_{3} R_{4}}{R_{3}+R_{4}}=7.0 \Omega+3.0 \Omega=10 \Omega .
$$

With $\varepsilon=30$ V across $R_{\text {eq }}$ the current there is $i_{2}=3.0 \mathrm{~A}$.
(b) The three resistors on the right reduce to

$$
R_{\mathrm{eq}}^{\prime}=R_{56}+R_{7}=\frac{R_{5} R_{6}}{R_{5}+R_{6}}+R_{7}=\frac{(6.0 \Omega)(2.0 \Omega)}{6.0 \Omega+2.0 \Omega}+1.5 \Omega=3.0 \Omega .
$$

With $\varepsilon=30 \mathrm{~V}$ across $R_{\text {eq }}^{\prime}$ the current there is $i_{4}=10 \mathrm{~A}$.
(c) By the junction rule, $i_{1}=i_{2}+i_{4}=13 \mathrm{~A}$.
(d) By symmetry, $i_{3}=\frac{1}{2} i_{2}=1.5 \mathrm{~A}$.
(e) By the loop rule (proceeding clockwise),

$$
30 \mathrm{~V}-i_{4}(1.5 \Omega)-i_{5}(2.0 \Omega)=0
$$

readily yields $i_{5}=7.5 \mathrm{~A}$.

Problem 27-92

The equivalent resistance of the series pair of $R_{3}=R_{4}=2.0 \Omega$ is $R_{34}=4.0 \Omega$, and the equivalent resistance of the parallel pair of $R_{1}=R_{2}=4.0 \Omega$ is $R_{12}=2.0 \Omega$. Since the voltage across R_{34} must equal that across R_{12} :

$$
V_{34}=V_{12} \Rightarrow i_{34} R_{34}=i_{12} R_{12} \quad \Rightarrow i_{34}=\frac{1}{2} i_{12}
$$

This relation, plus the junction rule condition $I=i_{12}+i_{34}=6.00 \mathrm{~A}$, leads to the solution $i_{12}=4.0 \mathrm{~A}$. It is clear by symmetry that $i_{1}=i_{12} / 2=2.00 \mathrm{~A}$.

