Physics 4B

Solutions to Chapter 31 HW

Chapter 31: Questions: 2, 8, 12
Exercises \& Problems: 2, 23, 24, 32, 41, 44, 48, 60, 72, 83

Question 31-2

(a) less; (b) greater

Question 31-8
(a) 1 and 4; (b) 2 and 3

Question 31-12

(a) lead; (b) capacitive; (c) less

Problem 31-2

(a) We recall the fact that the period is the reciprocal of the frequency. It is helpful to refer also to Fig. 31-1. The values of t when plate A will again have maximum positive charge are multiples of the period:

$$
t_{A}=n T=\frac{n}{f}=\frac{n}{2.00 \times 10^{3} \mathrm{~Hz}}=n(5.00 \mu \mathrm{~s}),
$$

where $n=1,2,3,4, \ldots$. The earliest time is $(n=1) t_{A}=5.00 \mu \mathrm{~s}$.
(b) We note that it takes $t=\frac{1}{2} T$ for the charge on the other plate to reach its maximum positive value for the first time (compare steps a and e in Fig. 31-1). This is when plate A acquires its most negative charge. From that time onward, this situation will repeat once every period. Consequently,

$$
t=\frac{1}{2} T+(n-1) T=\frac{1}{2}(2 n-1) T=\frac{(2 n-1)}{2 f}=\frac{(2 n-1)}{2\left(2 \times 10^{3} \mathrm{~Hz}\right)}=(2 n-1)(2.50 \mu \mathrm{~s}),
$$

where $n=1,2,3,4, \ldots$ The earliest time is $(n=1) t=2.50 \mu \mathrm{~s}$.
(c) At $t=\frac{1}{4} T$, the current and the magnetic field in the inductor reach maximum values for the first time (compare steps a and c in Fig. 31-1). Later this will repeat every half-period (compare steps c and g in Fig. 31-1). Therefore,

$$
t_{L}=\frac{T}{4}+\frac{(n-1) T}{2}=(2 n-1) \frac{T}{4}=(2 n-1)(1.25 \mu \mathrm{~s}),
$$

where $n=1,2,3,4, \ldots$ The earliest time is $(n=1) t=1.25 \mu$ s.

Problem 31-23

(a) The total energy U is the sum of the energies in the inductor and capacitor:

$$
U=U_{E}+U_{B}=\frac{q^{2}}{2 C}+\frac{i^{2} L}{2}=\frac{\left(3.80 \times 10^{-6} \mathrm{C}\right)^{2}}{2\left(7.80 \times 10^{-6} \mathrm{~F}\right)}+\frac{\left(9.20 \times 10^{-3} \mathrm{~A}\right)^{2}\left(25.0 \times 10^{-3} \mathrm{H}\right)}{2}=1.98 \times 10^{-6} \mathrm{~J}
$$

(b) We solve $U=Q^{2} / 2 C$ for the maximum charge:

$$
Q=\sqrt{2 C U}=\sqrt{2\left(7.80 \times 10^{-6} \mathrm{~F}\right)\left(1.98 \times 10^{-6} \mathrm{~J}\right)}=5.56 \times 10^{-6} \mathrm{C} .
$$

(c) From $U=I^{2} L / 2$, we find the maximum current:

$$
I=\sqrt{\frac{2 U}{L}}=\sqrt{\frac{2\left(1.98 \times 10^{-6} \mathrm{~J}\right)}{25.0 \times 10^{-3} \mathrm{H}}}=1.26 \times 10^{-2} \mathrm{~A} .
$$

(d) If q_{0} is the charge on the capacitor at time $t=0$, then $q_{0}=Q \cos \phi$ and

$$
\phi=\cos ^{-1}\left(\frac{q}{Q}\right)=\cos ^{-1}\left(\frac{3.80 \times 10^{-6} \mathrm{C}}{5.56 \times 10^{-6} \mathrm{C}}\right)= \pm 46.9^{\circ} .
$$

For $\phi=+46.9^{\circ}$ the charge on the capacitor is decreasing, for $\phi=-46.9^{\circ}$ it is increasing. To check this, we calculate the derivative of q with respect to time, evaluated for $t=0$. We obtain $-\omega Q$ sin ϕ, which we wish to be positive. Since $\sin \left(+46.9^{\circ}\right)$ is positive and $\sin \left(-46.9^{\circ}\right)$ is negative, the correct value for increasing charge is $\phi=-46.9^{\circ}$.
(e) Now we want the derivative to be negative and $\sin \phi$ to be positive. Thus, we take $\phi=+46.9^{\circ}$.

Problem 31-24

The charge q after N cycles is obtained by substituting $t=N T=2 \pi N / \omega^{\prime}$ into Eq. 31-25:

$$
\begin{aligned}
q & =Q e^{-R t / 2 L} \cos \left(\omega^{\prime} t+\phi\right)=Q e^{-R N T / 2 L} \cos \left[\omega^{\prime}\left(2 \pi N / \omega^{\prime}\right)+\phi\right] \\
& =Q e^{-R N(2 \pi \sqrt{L / C}) / 2 L} \cos (2 \pi N+\phi) \\
& =Q e^{-N \pi R \sqrt{C / L}} \cos \phi .
\end{aligned}
$$

We note that the initial charge (setting $N=0$ in the above expression) is $q_{0}=Q \cos \phi$, where $q_{0}=$ $6.2 \mu \mathrm{C}$ is given (with 3 significant figures understood). Consequently, we write the above result as $q_{N}=q_{0} \exp (-N \pi R \sqrt{C / L})$.
(a) For $N=5, q_{5}=(6.2 \mu \mathrm{C}) \exp (-5 \pi(7.2 \Omega) \sqrt{0.0000032 \mathrm{~F} / 12 \mathrm{H}})=5.85 \mu \mathrm{C}$.
(b) For $N=10, q_{10}=(6.2 \mu \mathrm{C}) \exp (-10 \pi(7.2 \Omega) \sqrt{0.0000032 \mathrm{~F} / 12 \mathrm{H}})=5.52 \mu \mathrm{C}$.
(c) For $N=100, q_{100}=(6.2 \mu \mathrm{C}) \exp (-100 \pi(7.2 \Omega) \sqrt{0.0000032 \mathrm{~F} / 12 \mathrm{H}})=1.93 \mu \mathrm{C}$.

Problem 31-32

(a) The circuit consists of one generator across one inductor; therefore, $\varepsilon_{m}=V_{L}$. The current amplitude is

$$
I=\frac{\varepsilon_{m}}{X_{L}}=\frac{\varepsilon_{m}}{\omega_{d} L}=\frac{25.0 \mathrm{~V}}{(377 \mathrm{rad} / \mathrm{s})(12.7 \mathrm{H})}=5.22 \times 10^{-3} \mathrm{~A} .
$$

(b) When the current is at a maximum, its derivative is zero. Thus, Eq. $30-35$ gives $\varepsilon_{L}=0$ at that instant. Stated another way, since $\varepsilon(t)$ and $i(t)$ have a 90° phase difference, then $\varepsilon(t)$ must be zero when $i(t)=I$. The fact that $\phi=90^{\circ}=\pi / 2 \mathrm{rad}$ is used in part (c).
(c) Consider Eq. 31-28 with $\varepsilon=-\varepsilon_{m} / 2$. In order to satisfy this equation, we require $\sin \left(\omega_{d} t\right)=-$ $1 / 2$. Now we note that the problem states that ε is increasing in magnitude, which (since it is already negative) means that it is becoming more negative. Thus, differentiating Eq. 31-28 with respect to time (and demanding the result be negative) we must also require $\cos \left(\omega_{d} t\right)<0$. These conditions imply that ωt must equal $(2 n \pi-5 \pi / 6)$ [$n=$ integer]. Consequently, Eq. 31-29 yields (for all values of n)

$$
i=I \sin \left(2 n \pi-\frac{5 \pi}{6}-\frac{\pi}{2}\right)=\left(5.22 \times 10^{-3} \mathrm{~A}\right)\left(\frac{\sqrt{3}}{2}\right)=4.51 \times 10^{-3} \mathrm{~A} .
$$

Problem 31-41

(a) The capacitive reactance is

$$
X_{C}=\frac{1}{\omega_{d} C}=\frac{1}{2 \pi f_{d} C}=\frac{1}{2 \pi(60.0 \mathrm{~Hz})\left(70.0 \times 10^{-6} \mathrm{~F}\right)}=37.9 \Omega .
$$

The inductive reactance 86.7Ω is unchanged. The new impedance is

$$
Z=\sqrt{R^{2}+\left(X_{L}-X_{C}\right)^{2}}=\sqrt{(200 \Omega)^{2}+(37.9 \Omega-86.7 \Omega)^{2}}=206 \Omega .
$$

(b) The phase angle is

$$
\phi=\tan ^{-1}\left(\frac{X_{L}-X_{C}}{R}\right)=\tan ^{-1}\left(\frac{86.7 \Omega-37.9 \Omega}{200 \Omega}\right)=13.7^{\circ} .
$$

(c) The current amplitude is

$$
I=\frac{\varepsilon_{m}}{Z}=\frac{36.0 \mathrm{~V}}{206 \Omega}=0.175 \mathrm{~A} .
$$

(d) We first find the voltage amplitudes across the circuit elements:

$$
\begin{aligned}
& V_{R}=I R=(0.175 \mathrm{~A})(200 \Omega)=35.0 \mathrm{~V} \\
& V_{L}=I X_{L}=(0.175 \mathrm{~A})(86.7 \Omega)=15.2 \mathrm{~V} \\
& V_{C}=I X_{C}=(0.175 \mathrm{~A})(37.9 \Omega)=6.62 \mathrm{~V}
\end{aligned}
$$

Note that $X_{L}>X_{C}$, so that ε_{m} leads I. The phasor diagram is drawn to scale below.

Problem 31-44
(a) The capacitive reactance is

$$
X_{C}=\frac{1}{2 \pi f C}=\frac{1}{2 \pi(400 \mathrm{~Hz})\left(24.0 \times 10^{-6} \mathrm{~F}\right)}=16.6 \Omega .
$$

(b) The impedance is

$$
\begin{aligned}
Z & =\sqrt{R^{2}+\left(X_{L}-X_{C}\right)^{2}}=\sqrt{R^{2}+\left(2 \pi f L-X_{C}\right)^{2}} \\
& =\sqrt{(220 \Omega)^{2}+\left[2 \pi(400 \mathrm{~Hz})\left(150 \times 10^{-3} \mathrm{H}\right)-16.6 \Omega\right]^{2}}=422 \Omega .
\end{aligned}
$$

(c) The current amplitude is

$$
I=\frac{\varepsilon_{m}}{Z}=\frac{220 \mathrm{~V}}{422 \Omega}=0.521 \mathrm{~A} .
$$

(d) Now $X_{C} \propto C_{\text {eq }}^{-1}$. Thus, X_{C} increases as $C_{\text {eq }}$ decreases.
(e) Now $C_{\text {eq }}=C / 2$, and the new impedance is

$$
Z=\sqrt{(220 \Omega)^{2}+\left[2 \pi(400 \mathrm{~Hz})\left(150 \times 10^{-3} \mathrm{H}\right)-2(16.6 \Omega)\right]^{2}}=408 \Omega<422 \Omega
$$

Therefore, the impedance decreases.
(f) Since $I \propto Z^{-1}$, it increases.

Problem 31-48

(a) With both switches closed (which effectively removes the resistor from the circuit), the impedance is just equal to the (net) reactance and is equal to

$$
X_{\text {net }}=(12 \mathrm{~V}) /(0.447 \mathrm{~A})=26.85 \Omega
$$

With switch 1 closed but switch 2 open, we have the same (net) reactance as just discussed, but now the resistor is part of the circuit; using Eq. 31-65 we find

$$
R=\frac{X_{\text {net }}}{\tan \phi}=\frac{26.85 \Omega}{\tan 15^{\circ}}=100 \Omega .
$$

(b) For the first situation described in the problem (both switches open) we can reverse our reasoning of part (a) and find

$$
X_{\text {net first }}=R \tan \phi^{\prime}=(100 \Omega) \tan \left(-30.9^{\circ}\right)=-59.96 \Omega .
$$

We observe that the effect of switch 1 implies

$$
X_{C}=X_{\text {net }}-X_{\text {net first }}=26.85 \Omega-(-59.96 \Omega)=86.81 \Omega .
$$

Then Eq. 31-39 leads to $C=1 / \omega X_{C}=30.6 \mu \mathrm{~F}$.
(c) Since $X_{\text {net }}=X_{L}-X_{C}$, then we find $L=X_{L} / \omega=301 \mathrm{mH}$.

Problem 31-60

The current in the circuit satisfies $i(t)=I \sin \left(\omega_{d} t-\phi\right)$, where

$$
\begin{aligned}
I & =\frac{\varepsilon_{m}}{Z}=\frac{\varepsilon_{m}}{\sqrt{R^{2}+\left(\omega_{d} L-1 / \omega_{d} C\right)^{2}}} \\
& =\frac{45.0 \mathrm{~V}}{\sqrt{(16.0 \Omega)^{2}+\{(3000 \mathrm{rad} / \mathrm{s})(9.20 \mathrm{mH})-1 /[(3000 \mathrm{rad} / \mathrm{s})(31.2 \mu \mathrm{~F})]\}^{2}}} \\
& =1.93 \mathrm{~A}
\end{aligned}
$$

and

$$
\begin{aligned}
\phi & =\tan ^{-1}\left(\frac{X_{L}-X_{C}}{R}\right)=\tan ^{-1}\left(\frac{\omega_{d} L-1 / \omega_{d} C}{R}\right) \\
& =\tan ^{-1}\left[\frac{(3000 \mathrm{rad} / \mathrm{s})(9.20 \mathrm{mH})}{16.0 \Omega}-\frac{1}{(3000 \mathrm{rad} / \mathrm{s})(16.0 \Omega)(31.2 \mu \mathrm{~F})}\right] \\
& =46.5^{\circ} .
\end{aligned}
$$

(a) The power supplied by the generator is

$$
\begin{aligned}
P_{g} & =i(t) \varepsilon(t)=I \sin \left(\omega_{d} t-\phi\right) \varepsilon_{m} \sin \omega_{d} t \\
& =(1.93 \mathrm{~A})(45.0 \mathrm{~V}) \sin [(3000 \mathrm{rad} / \mathrm{s})(0.442 \mathrm{~ms})] \sin \left[(3000 \mathrm{rad} / \mathrm{s})(0.442 \mathrm{~ms})-46.5^{\circ}\right] \\
& =41.4 \mathrm{~W}
\end{aligned}
$$

(b) With

$$
v_{c}(t)=V_{c} \sin \left(\omega_{d} t-\phi-\pi / 2\right)=-V_{c} \cos \left(\omega_{d} t-\phi\right)
$$

where $V_{c}=I / \omega_{d} C$, the rate at which the energy in the capacitor changes is

$$
\begin{aligned}
P_{c} & =\frac{d}{d t}\left(\frac{q^{2}}{2 C}\right)=i \frac{q}{C}=i v_{c} \\
& =-I \sin \left(\omega_{d} t-\phi\right)\left(\frac{I}{\omega_{d} C}\right) \cos \left(\omega_{d} t-\phi\right)=-\frac{I^{2}}{2 \omega_{d} C} \sin \left[2\left(\omega_{d} t-\phi\right)\right] \\
& =-\frac{(1.93 \mathrm{~A})^{2}}{2(3000 \mathrm{rad} / \mathrm{s})\left(31.2 \times 10^{-6} \mathrm{~F}\right)} \sin \left[2(3000 \mathrm{rad} / \mathrm{s})(0.442 \mathrm{~ms})-2\left(46.5^{\circ}\right)\right] \\
& =-17.0 \mathrm{~W} .
\end{aligned}
$$

(c) The rate at which the energy in the inductor changes is

$$
\begin{aligned}
P_{L} & =\frac{d}{d t}\left(\frac{1}{2} L i^{2}\right)=L i \frac{d i}{d t}=L I \sin \left(\omega_{d} t-\phi\right) \frac{d}{d t}\left[I \sin \left(\omega_{d} t-\phi\right)\right]=\frac{1}{2} \omega_{d} L I^{2} \sin \left[2\left(\omega_{d} t-\phi\right)\right] \\
& =\frac{1}{2}(3000 \mathrm{rad} / \mathrm{s})(1.93 \mathrm{~A})^{2}(9.20 \mathrm{mH}) \sin \left[2(3000 \mathrm{rad} / \mathrm{s})(0.442 \mathrm{~ms})-2\left(46.5^{\circ}\right)\right] \\
& =44.1 \mathrm{~W} .
\end{aligned}
$$

(d) The rate at which energy is being dissipated by the resistor is

$$
\begin{aligned}
P_{R} & =i^{2} R=I^{2} R \sin ^{2}\left(\omega_{d} t-\phi\right)=(1.93 \mathrm{~A})^{2}(16.0 \Omega) \sin ^{2}\left[(3000 \mathrm{rad} / \mathrm{s})(0.442 \mathrm{~ms})-46.5^{\circ}\right] \\
& =14.4 \mathrm{~W} .
\end{aligned}
$$

(e) Equal. $P_{L}+P_{R}+P_{c}=44.1 \mathrm{~W}-17.0 \mathrm{~W}+14.4 \mathrm{~W}=41.5 \mathrm{~W}=P_{g}$.

Problem 31-72

(a) From Eq. 31-65, we have

$$
\phi=\tan ^{-1}\left(\frac{V_{L}-V_{C}}{V_{R}}\right)=\tan ^{-1}\left(\frac{V_{L}-\left(V_{L} / 1.50\right)}{\left(V_{L} / 2.00\right)}\right)
$$

which becomes $\tan ^{-1}(2 / 3)=33.7^{\circ}$ or 0.588 rad .
(b) Since $\phi>0$, it is inductive $\left(X_{L}>X_{C}\right)$.
(c) We have $V_{R}=I R=9.98 \mathrm{~V}$, so that $V_{L}=2.00 V_{R}=20.0 \mathrm{~V}$ and $V_{C}=V_{L} / 1.50=13.3 \mathrm{~V}$. Therefore, from Eq. 31-60, we have

$$
\varepsilon_{m}=\sqrt{V_{R}^{2}+\left(V_{L}-V_{C}\right)^{2}}=\sqrt{(9.98 \mathrm{~V})^{2}+(20.0 \mathrm{~V}-13.3 \mathrm{~V})^{2}}=12.0 \mathrm{~V} .
$$

Problem 31-83

From Eq. 31-4 we get $f=1 / 2 \pi \sqrt{L C}=1.84 \mathrm{kHz}$.

